Skip to main content

Advertisement

Log in

The impact of agricultural Best Management Practices on water quality in a North German lowland catchment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Research on water quality degradation caused by point and diffuse source pollution plays an important role in protecting the environment sustainably. Implementation of Best Management Practices (BMPs) is a conventional approach for controlling and mitigating pollution from diffuse sources. The objectives of this study were to assess the long-term impact of point and diffuse source pollution on sediment and nutrient load in a lowland catchment using the ecohydrological model Soil and Water Assessment Tool (SWAT) and to evaluate the cost and effectiveness of BMPs for water quality improvement in the entire catchment. The study area, Kielstau catchment, is located in the North German lowlands. The water quality is not only influenced by the predominating agricultural land use in the catchment as cropland and pasture, but also by six municipal wastewater treatment plants. Diffuse entries as well as punctual entries from the wastewater treatment plants are implemented in the model set-up. Results from model simulations indicated that the SWAT model performed satisfactorily in simulating flow, sediment, and nutrient load in a daily time step. Two approaches to structural and nonstructural BMPs have been recommended in relation to cost and effectiveness of BMPs in this study. These BMPs include extensive land use management, grazing management practice, field buffer strip, and nutrient management plan. The results showed that BMPs would reduce fairly the average annual load for nitrate and total nitrogen by 8.6% to 20.5%. However, the implementation of BMPs does not have much impact on reduction in the average annual load of sediment and total phosphorus at the main catchment outlet. The results obtained by implementing those BMPs ranged from 0.8% to 4.9% and from 1.1% to 5.3% for sediment and total phosphorus load reduction, respectively. This study also reveals that reduction only in one type of BMP did not achieve the target value for water quality according to the European Water Framework Directive. The combination of BMPs improved considerably water quality in the Kielstau catchment, achieving a 53.9% and a 46.7% load reduction in nitrate and total nitrogen load, respectively, with annual implementation cost of 93,000 Euro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambus, P., & Lowrance, R. (1991). Comparison of denitrification in two riparian soils. Soil Science Society of America Journal, 55, 994–997.

    Article  Google Scholar 

  • Ambus, P., & Christensen, S. (1993). Denitrification variability and control in a riparian fen irrigated with agricultural drainage water. Soil Biology & Biochemistry, 25, 915–923.

    Article  Google Scholar 

  • Arabi, M., Frankenberger, J. R., Engel, B. A., & Arnold, J. G. (2007). Representation of agricultural conservation practices with SWAT. Hydrological Processes, 22(16), 3042–3055.

    Article  Google Scholar 

  • Arabi, M., Govindaraju, R. S., & Hantush, M. M. (2004). Watershed management tool for selection and spatial allocation of non-point source pollution control practices (91 pp.). EPA/600/R-08/036, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268.

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modelling and assessment. Part I. Model development. Journal of the American Water Resources Association, 34(1), 73–89.

    Article  CAS  Google Scholar 

  • Bagnold, R. A. (1977). Bed load transport in natural rivers. Water Resources Research, 13(2), 303–312.

    Article  Google Scholar 

  • Bärlund, I., Kirkala, T., Malve, O., & Kämäri, J. (2007). Assessing SWAT model performance in the evaluation of management actions for the implementation of the Water Framework Directive in a Finisch catchment. Environmental Modelling & Software, 22(5), 719–724.

    Article  Google Scholar 

  • Beasley, D. B., & Hugins, L. F. (1982). ANSWERS: Areal non-point source watershed environmental response simulation (p. 54). User’s Manual, U.S.EPA Report, Chicago, IL.

  • Behera, S., & Panda, R. K. (2006). Evaluation of management alternatives for an agricultural watershed in a sub-humid subtropical region using a physical process model. Agriculture, Ecosystems & Environment, 113(1–4), 62–72.

    Article  Google Scholar 

  • Behrendt, H., Huber, P., Opity, D., Scholy, G., & Uebe, R. (1999). Nährstoffbilanzierung der Flussgebiete Deutschlands (373 pp.). UBA-Bericht. Inst. f. Gewässerökologie und Binnenfischerei im Forschungsverbund Berlin e. V., Berlin.

  • BGR (Bundesanstalt für Geowissenschaften und Rohstoffe (Ed.)) (1999). Bodenübersichtskarte im Maßstab 1:200 000, Verbreitung der Bodengesellschaften, Hannover (unpubl.).

  • Bracmort, K. S., Arabi, M., Frankenberger, J. R., Engel, B. A., & Arnold, J. G. (2006). Modelling long-term water quality impact of structural BMPs. Transactions of the ASABE, 49(2), 367–374.

    CAS  Google Scholar 

  • Brown, L.C., & Barnwell, T. O. Jr. (1987). The enhanced water quality models QUAL2E and QUAL2E-UNCAS: Documentation and user manual. EPA/600/3-87/007.

  • BLE (Bundesanstalt für Landwirtschaft und Ernährung) (2008). Durchschnittliche Anzahl der Rinder pro landwirtschaftlich genutzter Fläche in Deutschland. http://www.ble.de/cln_090/nn_1624448/SharedDocs/Downloads/01__Marktangelegenheiten/08__Marktbeobachtung/02__MilchUndMilcherzeugnisse/JaehrlicheErgebnisse/02__Bundeslaender/090915__406003100__06,templateId=raw,property=publicationFile.xls/090915_406003100_06.xls.

  • Degarmo, E. P., Sullivan, W. G., Bontadelli, J. A., & Wicks, E. M. (1997). Engineering economy. Upper Saddle River, New Jersey: Prentice Hall.

    Google Scholar 

  • Devito, K. J., Fitzgerald, D., Hill, A. R., & Aravena, R. (2000). Nitrate dynamics in relation to lithology and hydrologic flow path in a river riparian zone. Journal of Environmental Quality, 29, 1075–84.

    Article  CAS  Google Scholar 

  • DLR (Deutsches Zentrum für Luft- und Raumfahrt) (1995). Landsat TM5-Scene of 1995, upper left corner: RW: 3503180 HW: 6084975, spatial resolution 25 m × 25 m, Köln.

  • Donoso, G., Cancino, J., & Magri, A. (1999). Effects of agricultural activities on water pollution with nitrates and pesticides in the central valley of Chile. Water Science and Technology, 39(3), 49–60.

    Article  CAS  Google Scholar 

  • Duda, A. M. (1993). Addressing non-point sources of water pollution must become an international priority. Water Science and Technology, 28(3–5), 1–11.

    CAS  Google Scholar 

  • DWD (Deutscher Wetterdienst) (2009a). Climate data 1993–2008.

  • DWD (Deutscher Wetterdienst) (2009b). Means of precipitation and air temperature of the period 1961–1990, http://www.dwd.de/de/FundE/Klima/KLIS/daten/online/nat/index_mittelwerte.htm, last access 3 January 2009.

  • EC (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, L327, 1–72.

    Google Scholar 

  • FAPRI (Food and Agricultural policy Research Institute) (2006). Upper and lower big marines river watershed: computer based evaluation of the AgNPS-SALT project (p. 37). Food and Agricultural Policy Research Institute. University of Missouri.

  • Fohrer, N., Schmalz, B., Tavares, F., & Golon, J. (2007). Ansätze zur Integration von landwirtschaftlichen Drainagen in die Modellierung des Landschaftswasserhaushalts von mesoskaligen Tieflandeinzugsgebieten. Hydrologie und Wasserbewirtschaftung, 51(4), 164–169.

    Google Scholar 

  • Frame, J. (1992). Improved grassland management (p. 351). Wharfedale: Farming.

    Google Scholar 

  • Garen, D. C., & Moore, D. S. (2005). Curve number hydrology in water quality modeling: Uses, abuse, and future directions. Journal of the American Water Resources Association, 41(2), 377–388.

    Article  Google Scholar 

  • Gassman, P. W., Osei, E., Saleh, A., Rodecap, J., Norvell, S., & Williams, J. (2006). Alternative practices for sediment and nutrient loss control on livestock farms in northeast Iowa. Agriculture, Ecosystems & Environment, 117(2–3), 135–144.

    Article  Google Scholar 

  • Gassman, P. W., Reyes, M., Green, C. H., & Arnold, J. G. (2007). SWAT peer-reviewed literature: a review. In Proceedings. Third International SWAT Conference, 13 July–15 July 2005, Zurich, Switzerland. Accessed 12 January 2008. http://www.brc.tamus.edu/swat/3rdswatconf/PDF/Session_I/Gassman.pdf.

  • Gevaert, V., Van Griensven, A., Holvoet, K., Seuntjens, P., & Vanrolleghem, P. A. (2008). SWAT developments and recommendations for modelling agricultural pesticide mitigation measures in river basins. Hydrological Sciences Journal, 53(5), 1075–1089.

    Article  CAS  Google Scholar 

  • Gitau, M. W., Veith, T. L., & Gburek, W. J. (2004). Farm-level optimization of BMP placement for cost-effective pollution reduction. Transactions of American Society of Agricultural Engineers (ASAE), 47(6), 1923–1931.

    Google Scholar 

  • Gold, A. J., Groffman, P. M., Addy, K., Kellogg, D. Q., Stolt, M., & Rosenblatt, A. E. (2001). Landscape attributes as controls on groundwater nitrate removal capacity of riparian zones. Journal of the American Water Resources Association, 39, 1457–1464.

    Article  Google Scholar 

  • Gömann, H., Kreins, P., Kunkel, R., & Wendland, F. (2005). Model based impact analysis of policy options aiming at reducing diffuse pollution by agriculture—a case study for the river Ems and a sub-catchment of the Rhine. Environmental Modelling & Software, 20, 261–271.

    Article  Google Scholar 

  • Hargreaves, G., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied engineering in agriculture, 1, 96–99.

    Google Scholar 

  • Hattermann, F. F., Krysanova, V., Habeck, A., & Bronstert, A. (2006). Integrating wetlands and riparian zones in river basin modeling. Ecological Modelling, 199(4), 379–392.

    Article  Google Scholar 

  • Hefting, M. M., & Jeroen, J. M. K. (1998). Nitrogen removal in buffer strips along a lowland stream in the Netherlands: A pilot study. Environmental Pollution, 102, 521–526.

    Article  CAS  Google Scholar 

  • Hesse, C., Krysanova, V., Päzolt, J., & Hattermann, F. F. (2008). Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality. Ecological Modelling, 218(1–2), 135–148.

    Article  Google Scholar 

  • Højberg, A. L., Refsgaard, J. C., van Geer, F., Jørgensen, L. F., & Zsuffa, I. (2007). Use of models to support the monitoring requirements in the water framework directive. Water Resources Management, 21(10), 649–1672.

    Article  Google Scholar 

  • Humenik, F. J., Smolen, M. D., & Dressing, S. A. (1987). Pollution form nonpoint sources: Where we are and where we should go. Environmental Science & Technology, 21(8), 737–742.

    Article  CAS  Google Scholar 

  • Jha, M., Arnold, J. G., & Gassman, P. W. (2006). Water quality modeling for the Racccoon River watershed using SWAT. Center for Agricultural and Rural Development. CARD Working Paper 06-WP 428. Available at: http://www.card.iastate.edu/publications/synopsis.aspx?id=1019.

  • Johanson, R. C., Imhoff, J. C., Davis, H. H., Kittle, J. L., & Donigian, A. S. (1984). HSPF: Hydrologic Simulation Progam-Fortran (p. 80). User’s Manual, U.S.EPA Environmental Research Laboratory, Athens, Georgia.

  • Kiesel, J., Schmalz, B., & Fohrer, N. (2009). SEPAL—a simple GIS-based tool to quantify sediment pathways in lowland catchments. Adv Geosci, 21, 25–32.

    Article  Google Scholar 

  • Kladivko, E. J., Grochulska, J., Turco, R. F., Van Scoyoc, G. E., & Eigel, J. D. (1999). Pesticide and nitrate transport into subsurface tile drains of different spacing. Journal of Environmental Quality, 30, 1305–1314.

    Google Scholar 

  • Krause, S., & Bronstert, A. (2005). An advanced approach for catchment delineation and water balance modeling within wetlands and floodplains. Adv Geosci, 5, 1–5.

    Article  Google Scholar 

  • Krause, S., Bronstert, A., & Zehe, E. (2007). Groundwater—surface water interactions in a North German lowland floodplain—implications for the river discharge dynamics and riparian water balance. Journal of Hydrology, 347, 404–417.

    Article  Google Scholar 

  • Kreins, P., Julius, C., & Gömann, H. (2003). RAUMIS-Calculations 02/2003. Research Association for Agricultural Policy. Forschungsgesellschaft für Agrarpolitik und Agrar-soziologie e.V., FAA, Bonn.

  • Kreis Schleswig-Flensburg (2009). Kläranlagen-Einleiterdaten, FD Wasserwirtschaft, Schleswig (unpubl.).

  • Krysanova, V., Müller-Wohlfeil, D. I., & Becker, A. (1998). Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecological Modelling, 106(1–2), 261–289.

    Article  CAS  Google Scholar 

  • Krysanova, V., Hattermann, F. F., & Habeck, A. (2005). Expected changes in water resources availability and water quality with respect to climate change in the Elbe river basin (Germany). Nordic Hydrol, 36(4–5), 321–333.

    CAS  Google Scholar 

  • KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft) (2008). Betriebsplanung Landwirtschaft 2008/2009, Darmstadt.

  • Lam, Q. D., Schmalz, B., & Fohrer, N. (2010). Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agr Water Manage, (97), 317–325.

  • Lambert, D. M., Sullivan, P., Claassen, R., & Foreman, L. (2007). Profiles of US Farm Households Adopting Conservation-compatible Practices. Land Use Policy, 24(1), 72–88.

    Article  Google Scholar 

  • LAWA (Länderarbeitsgemeinschaft Wasser) (1998). Beurteilung der Wasserbeschaffenheit von Fließgewässern in der Bundesrepublik Deutschland—Chemische Gewässergüteklassifikation, Kulturbuchverlag Berlin.

  • Lenhart, T., Eckhardt, K., Fohrer, N., & Frede, H.-G. (2002). Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, 27, 645–654.

    Google Scholar 

  • Lenhart, T., Fohrer, N., & Frede, H.-G. (2003). Effects of land use changes on the nutrient balance in mesoscale catchments. Physics and Chemistry of the Earth, 28, 1301–1309.

    Google Scholar 

  • Lksh (Landwirtschaftskammer Schleswig-Holstein) (2006). Richtwerte für die Düngung (unpubl).

  • Lowrance, R. R., Todd, R. L., & Asmussen, L. E. (1984). Nutrient cycling in an agricultural watershed—I phreatic movement. Journal of Environmental Quality, 13, 22–27.

    Article  CAS  Google Scholar 

  • LVermA (Landesvermessungsamt Schleswig-Holstein) (1995). Digitales Geländemodell für Schleswig-Holstein. Quelle: TK25. Gitterweite 25 m × 25 m und TK 50 Gitterweite 50 m × 50 m, Kiel (unpubl.).

  • McElroy, A. D., Chiu, S. Y., Nebgen, J. W., Aleti, A., & Bennett, F. W. (1976). Loading functions for assessment of water pollution from nonpoint sources. EPA 600/2-76-151. Washington: Environmental Protection Agency.

  • Monteith, J. L. (1965). Evaporation and environment. In G. F. Fogg (Ed.), The state and movement of water in living organisms (pp. 205–234). Cambridge University Press, Cambridge.

    Google Scholar 

  • Morris, M. D. (1991). Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2), 161–174.

    Article  Google Scholar 

  • Müller, L., Behrendt, A., & Schindler, U. (2004). Structural aspects of the soil landscape and soil properties of two lowland sites in North-East Germany. Archives of Agronomy and Soil Science, 50(3), 289–307.

    Article  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282–290.

    Article  Google Scholar 

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R., & King, K. W. (2002). Soil and water assessment tool theoretical documentation. Version 2000. GSWRL Report 02-01, BRC Report 02-05, Temple, Texas, USA.

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2005). Soil and water assessment tool, theoretical documentation. Version 2005. Blackland Research Center, Grassland, Soil and Water Research Laboratory, Agricultural Research Service, Temple, TX.

  • Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81–92.

    Article  Google Scholar 

  • Ponce, V. M., & Hawkins, R. H. (1996). Runoff curve number: Has it reached maturity? Journal of Hydrologic Engineering, 1(1), 11–19.

    Article  Google Scholar 

  • Ribaudo, M. O., & Johansson, R. C. (2007). Nutrient management use at the rural–urban fringe: Does demand for environmental quality play a role? Review of Agricultural Economics, 29(4), 689–699.

    Article  Google Scholar 

  • Rode, M., Klauer, B., Petry, D., Volk, M., Wenk, G., & Wagenschein, D. (2008). Integrated nutrient transport modeling with respect to the implementation of the European WFD: the Weiße Elster case study, Germany. Water SA, 34(4), 490–496.

    Google Scholar 

  • Sabater, S., Butturini, J. C. A., Clement, T., Burt, D., Dowrick, M., Hefting, V., et al. (2003). Nitrogen removal by Riparian buffers along a European climatic gradient: Patterns and factors of variation. Ecosystems, 6, 20–30.

    Article  CAS  Google Scholar 

  • Saleh, A., Arnold, J. G., Gassman, P. W., Hauck, L. W., Rosenthal, W. D., Williams, J. R., et al. (2000). Application of SWAT for the upper North Bosque River watershed. Transactions of the ASAE, 43(5), 1077–1087.

    CAS  Google Scholar 

  • Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W., Srinivasan, R., & Hauck, L. (2001). Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association, 37, 1169–1188.

    Article  CAS  Google Scholar 

  • Santhi, C., Srinivasan, R., Arnold, J. G., & Williams, J. R. (2006). A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environmental Modelling & Software, 21, 1141–1157.

    Article  Google Scholar 

  • SBD (Statistisches Bundesamt Deutscheland) (2009). Labour market data of the Federal Employment Agency. http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/EN/Navigation/Homepage__NT.psml> > >!”§$%&/()==?¿_:;MNBVXCYXY.

  • Schmalz, B., & Fohrer, N. (2010). Ecohydrological research in the German lowland catchment Kielstau. IAHS Publ. 333, 115–120.

    Google Scholar 

  • Schmalz, B., Tavares, F., & Fohrer, N. (2007). Assessment of nutrient entry pathways and dominating hydrological processes in lowland catchments. Advances in Geosciences, 11, 107–112.

    Article  Google Scholar 

  • Schmalz, B., Bieger, K., & Fohrer, N. (2008a). A method to assess instream water quality—the role of nitrogen entries in a North German rural lowland catchment. Advances in Geosciences, 18, 37–41.

    Article  Google Scholar 

  • Schmalz, B., Tavares, F., & Fohrer, N. (2008b). Modelling hydrological lowland processes in mesoscale river basins with SWAT—Capabilities and challenges. Hydrological Sciences Journal, 53(5), 989–1000.

    Article  Google Scholar 

  • Schmalz, B., Springer, P., & Fohrer, N. (2009). Variability of water quality in a riparian wetland with interacting shallow groundwater and surface water. Journal of Plant Nutrition and Soil Science, 172(6), 757–768.

    Article  CAS  Google Scholar 

  • SCS (Soil Conservation Service) (1972). Section 4: Hydrology in national engineering handbook (pp. 1–30).

  • SLN (Service-Labor Niederrhen) (2008). Preislist für Laborleistungen. http://www.service-labor-niederrhein.de.

  • Staatliches Umweltamt Schleswig (2009). Hourly discharge data 1993–2008 (unpubl.).

  • Tavares, F. (2006). Continuous, spatially distributed, stream flow and quality assessment of a lowland catchment in Northern Germany (p. 134). Master thesis in “Environmental Management”, Ecology Centre Kiel University. http://www.hydrology.uni-kiel.de/lehre/abschlussarbeiten/msc_tavares.pdf.

  • Taylor, A., & Wong, T. (2002). Nonstructural stormwater quality best management practices: An overview of their use, cost and evaluation. Technical Report 02/11, Cooperative Research Center for Catchment Hydrology, Victoria, Australia. Accessed on 17 October 2007. Available online at: http://www.catchment.crc.org.au/pdfs/Technical200211.pdf.

  • Tiemeyer, B., Kahle, P., & Lennartz, B. (2006). Nutrient losses from artificially drained catchments in North-Eastern Germany at different scale. Agricultural Water Management, 85, 47–57.

    Article  Google Scholar 

  • Tripathi,M. P., Panda, R. K., & Raghuwanshi, N. S. (2005). Development of effective management plan for critical subwatersheds using SWAT model. Hydrological Processes, 19, 809–826.

    Article  Google Scholar 

  • Tripathi, M. P., Panda, R. K., Raghuwanshi, N. S., & Singh, R. (2004). Hydrological modeling of a small watershed using generated rainfall in the soil and water assessment tool model. Hydrological Processes, 18, 1811–1821.

    Article  Google Scholar 

  • US EPA (United States Environmental Protection Agency) (2004). The use of best management practices in urban watersheds. US EPA Office of Research and Development Report No. EPA/600/R-04/184, Washington, DC, US.

  • Van Griensven, A., Meixner, T., Grundwald, S., Bishop, T., Diluzio, A., & Srinivasan, R. (2006). A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of hydrology, 324(1–4), 10–23.

    Article  Google Scholar 

  • Vidon, P. G. F., & Hill, A. R. (2004). Landscape controls on nitrate removal in stream riparian zones. Water Resources Research, 40:W03201. doi:10.1029/2003WR002473.

    Article  Google Scholar 

  • Volk, M., Liersch, S., & Schmidt, G. (2009). Towards the implementation of the European water framework directive? Lessons learned from water quality simulations in an agricultural watershed. Land Use Policy, 26, 580–588.

    Article  Google Scholar 

  • William, J. R., & Hann, R. W. (1978). Optimal operation of large agricultural watersheds with water quality constraints (pp. 1–143). Texas Water Resources Institute, Texas A& M University, College Station, TX. Technical Report No. 96.

  • William, J. R., Jones, C. A., & Dyke, P. T. (1984). A modeling approach for determining the relationship between erosion and soil productivity. Transactions of the ASAE, 27(1), 129–144.

    Google Scholar 

  • Williams, J. R. (1975). Sediment routing for agricultural watersheds. Water Resources Bulletin, 11(5), 965–974.

    Google Scholar 

  • Winchell, M., Srinivasan, R., Di Luzio, M., & Arnold, J. G. (2007). ArcSWAT interface for SWAT user’s guide. Blackland Research Center, Texas Agricultural Experiment station and USDA Agricultural Research Service.

  • Yoon, J., & Disrud, L. A. (1993). Evaluation of agricultural nonpoint source pollution control on water quality in Southwestern North Dakota with AGNPS model (pp. 1–122). Research Report, Agricultural Engineering Department, North Dakota State University, Fargo, ND 58105.

  • Zalidis, G., Stamatiadis, S., Takavakoglou, V., Eskridge, K., & Misopolinos, N. (2002). Impacts of agricultural practices on soil and water quality in the Mediterance region and proposed assessment methodology. Agriculture, Ecosystems & Environment, 88(2), 133–146.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. D. Lam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, Q.D., Schmalz, B. & Fohrer, N. The impact of agricultural Best Management Practices on water quality in a North German lowland catchment. Environ Monit Assess 183, 351–379 (2011). https://doi.org/10.1007/s10661-011-1926-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-1926-9

Keywords

Navigation