Skip to main content
Log in

Comprehensive analysis of genomic variation of Hop stunt viroid

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Hop stunt viroid (HSVd) infects a wide range of plants. In this study, we assembled de novo two HSVd genomes from the transcriptome of an apricot species. To examine HSVd variation in a single tree, we sequenced 70 HSVd genomes from unique apricot and plum trees and identified 11 HSVd variants. In addition, we analysed all known 572 HSVd sequences and identified 382 non-redundant HSVd variants. Phylogenetic analysis identified five groups of the 382 HSVd variants. Furthermore, we generated a consensus HSVd sequence by averaging across all 382 sequences. Comparative sequence analysis identified several regions showing sequence variation, while the terminal left region of the rod-like structure was highly conserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams, I. P., Glover, R. H., Monger, W. A., Mumford, R., Jackeviciene, E., Navalinskiene, M., et al. (2009). Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Molecular Plant Pathology, 10(4), 537–545. doi:10.1111/j.1364-3703.2009.00545.x.

    Article  CAS  PubMed  Google Scholar 

  • Amari, K., Gomez, G., Myrta, A., Di Terlizzi, B., & Pallás, V. (2001). The molecular characterization of 16 new sequence variants of hop stunt viroid reveals the existence of invariable regions and a conserved hammerhead-like structure on the viroid molecule. Journal of General Virology, 82(4), 953–962. doi:10.1099/0022-1317-82-4-953.

    Article  CAS  PubMed  Google Scholar 

  • Amari, K., Ruiz, D., Gómez, G., Sánchez-Pina, M., Pallás, V., & Egea, J. (2007). An important new apricot disease in Spain is associated with hop stunt viroid infection. European Journal of Plant Pathology, 118(2), 173–181. doi:10.1007/s10658-007-9127-7.

    Article  Google Scholar 

  • Barba, M., Czosnek, H., & Hadidi, A. (2014). Historical perspective, development and applications of next-generation sequencing in plant virology. Virus, 6(1), 106–136. doi:10.3390/v6010106.

    Article  Google Scholar 

  • Canizares, M. C., Marcos, J. F., & Pallás, V. (1999). Molecular characterization of an almond isolate of Hop stunt viroid (HSVd) and conditions for eliminating spurious hybridization in its diagnosis in almond samples. European Journal of Plant Pathology, 105(6), 553–558.

    Article  CAS  Google Scholar 

  • Chiumenti, M., Torchetti, E., Di Serio, F., & Minafra, A. (2014). Identification and characterization of a viroid resembling apple dimple fruit viroid in fig (Ficus carica L.) by next generation sequencing of small RNAs. Virus Research, 18854–18859. doi:10.1016/j.virusres.2014.03.026.

  • Di Serio, F., Flores, R., Verhoeven, J. T. J., Li, S.-F., Pallás, V., Randles, J., et al. (2014). Current status of viroid taxonomy. Archives of Virology, 159(12), 3467–3478.

    Article  CAS  PubMed  Google Scholar 

  • Elleuch, A., Hamdi, I., Ellouze, O., Ghrab, M., Fkahfakh, H., & Drira, N. (2013). Pistachio (Pistacia vera L.) is a new natural host of hop stunt viroid. Virus Genes, 47(2), 330–337. doi:10.1007/s11262-013-0929-8.

    Article  CAS  PubMed  Google Scholar 

  • Flores, R., Serra, P., Minoia, S., Di Serio, F., & Navarro, B. (2012). Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs. Frontiers in Microbiology, 3. doi:10.3389/fmicb.2012.00217.

  • Gago, S., Elena, S. F., Flores, R., & Sanjuán, R. (2009). Extremely high mutation rate of a hammerhead viroid. Science, 323(5919), 1308–1308. doi:10.1126/science.1169202.

    Article  CAS  PubMed  Google Scholar 

  • Glouzon, J.-P. S., Bolduc, F., Wang, S., Najmanovich, R. J., & Perreault, J.-P. (2014). Deep-sequencing of the Peach latent mosaic viroid reveals new aspects of population heterogeneity. PloS One, 9(1), e87297. doi:10.1371/journal.pone.0087297.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., et al. (2011). Full-length transcriptome assembly from RNA-seq data without a reference genome. Nature Biotechnology, 29(7), 644–652. doi:10.1038/nbt.1883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, L., Liu, S., Wu, Z., Mu, L., Xiang, B., & Li, S. (2008). Hop stunt viroid (HSVd) newly reported from hop in Xinjiang, China. Plant Pathology, 57(4), 764–764. doi:10.1111/j.1365-3059.2008.01875.x.

    Article  Google Scholar 

  • Kofalvi, S., Marcos, J. F., Cañizares, M., Pallás, V., & Candresse, T. (1997). Hop stunt viroid (HSVd) sequence variants from Prunus species: evidence for recombination between HSVd isolates. Journal of General Virology, 78(12), 3177–3186.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. Y., Puchta, H., Ramm, K., & Sänger, H. L. (1988). Nucleotide sequence of the Korean strain of Hop stunt viroid (HSV). Nucleic Acids Research, 16(17), 8708–8708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez De Alba, A. E., Sägesser, R., Tabler, M., & Tsagris, M. (2003). A bromodomain-containing protein from tomato specifically binds Potato spindle tuber viroid RNA in vitro and in vivo. Journal of Virology, 77(17), 9685–9694.

    Article  PubMed  PubMed Central  Google Scholar 

  • Massart, S., Olmos, A., Jijakli, H., & Candresse, T. (2014). Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Research, 18890–18896. doi:10.1016/j.virusres.2014.03.029.

  • Nie, X., & Singh, R. P. (2000). Detection of multiple potato viruses using an oligo (dT) as a common cDNA primer in multiplex RT-PCR. Journal of Virological Methods, 86(2), 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Ohno, T., Akiya, J., Higuchi, M., Okada, Y., Yoshikawa, N., Takahashi, T., et al. (1982). Purification and characterization of hop stunt viroid. Virology, 118(1), 54–63.

    Article  CAS  PubMed  Google Scholar 

  • Ohno, T., Takamatsu, N., Meshi, T., & Okada, Y. (1983). Hop stunt viroid: molecular cloning and nucleotide sequence of the complete cDNA copy. Nucleic Acids Research, 11(18), 6185–6197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallas, V., Navarro, A., & Flores, R. (1987). Isolation of a viroid-like RNA from hop different from hop stunt viroid. Journal of General Virology, 68(12), 3201–3205.

    Article  CAS  Google Scholar 

  • Puchta, H., Ramm, K., & Sänger, H. L. (1988). Nucleotide sequence of a hop stunt viroid isolate from the German grapevine cultivar’Riesling’. Nucleic Acids Research, 16(6), 2730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reanwarakorn, K., & Semancik, J. (1999). Correlation of hop stunt viroid variants to cachexia and xyloporosis diseases of citrus. Phytopathology, 89(7), 568–574.

    Article  CAS  PubMed  Google Scholar 

  • Rezaian, M., Koltunow, A., & Krake, L. (1988). Isolation of three viroids and a circular RNA from grapevines. Journal of General Virology, 69, 413–422.

    Article  CAS  PubMed  Google Scholar 

  • Sano, T. (2013). History, origin, and diversity of hop stunt disease and Hop stunt viroid. Acta Horticulturae, 101087–101096. doi:10.17660/ActaHortic.2013.1010.9.

  • Sano, T., Uyeda, I., Shikata, E., Ohno, T., & Okada, Y. (1984). Nucleotide sequence of cucumber pale fruit viroid: homology to hop stunt viroid. Nucleic Acids Research, 12(8), 3427–3434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano, T., Uyeda, I., Shikata, E., Meshi, T., Ohno, T., & Okada, Y. (1985). A viroid-like RNA isolated from grapevine has high sequence homology with hop stunt viroid. Journal of General Virology, 66(2), 333–338.

    Article  CAS  Google Scholar 

  • Sano, T., Ohshima, K., Hataya, T., Uyeda, I., Shikata, E., Chou, T.-G., et al. (1986). A viroid resembling hop stunt viroid in grapevines from Europe, the United States and Japan. Journal of General Virology, 67(8), 1673–1678.

    Article  CAS  Google Scholar 

  • Sano, T., Hataya, T., Terai, Y., & Shikata, E. (1989). Hop stunt viroid strains from dapple fruit disease of plum and peach in Japan. Journal of General Virology, 70(6), 1311–1319.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. doi:10.1093/molbev/mst197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Q., Wang, Y., Cao, M., Pantaleo, V., Burgyan, J., Li, W.-X., et al. (2012). Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. PLoS Pathogens, 109(10), 3938–3943. doi:10.1073/pnas.1117815109.

    CAS  Google Scholar 

  • Yang, X., Hadidi, A., & Garnsey, S. (1992). Enzymatic cDNA amplification of citrus exocortis and cachexia viroids from infected citrus hosts. Phytopathology, 82279–82285. doi:10.1094/Phyto-82-279.

  • Yang, Y., Wang, H., Cheng, Z., Sano, T., & Li, S. (2006). First report of hop stunt viroid from plum in China. New Disease Reports, 1341.

  • Yoon, J., & Palukaitis, P. (2013). Sequence comparisons of global Chrysanthemum stunt viroid variants: multiple polymorphic positions scattered through the viroid genome. Virus Genes, 46(1), 97–104. doi:10.1007/s11262-012-0811-0.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Qi, S., Tang, N., Zhang, X., Chen, S., Zhu, P., et al. (2014). Discovery of replicating circular RNAs by RNA-seq and computational algorithms. PLoS Pathogens, 10(12), e1004553. doi:10.1371/journal.ppat.1004553.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406–3415. doi:10.1093/nar/gkg595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of “Next-Generation BioGreen21 Program (Project No. PJ01130902)” Rural Development Administration, Republic of Korea. This work is dedicated to the memory of my father, Tae Jin Cho (1946–2015).

Author contributions

W.K.C. and Y.J. designed the research; Y.J., H.K., H.C., J.K.C., S.L., S.M.K., S.L.K., and B.C.L. performed the research; Y.J., H.K., J.K.C., H.C., S.M.K., S.L.K., B.C.L., and W.K.C. analysed the data; and Y.J., H.K., and W.K.C. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Kyong Cho.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Yeonhwa Jo, Hyosub Chu and Hangil Kim contributed equally to this work.

Electronic supplementary material

Supplementary Figure 1

The phylogenetic tree for the 382 non-redundant HSVd variants generated by the Splitstree program. After alignment of 382 HSVd genome sequences using ClustalW implemented in MEGA6 program, the aligned file was converted into a nexus file. The generated nexus file was imported into Splitstree program to show phylogenetic networks for 382 non-redundant HSVd variants. Known HSVd isolates as well as HSVd variants from this study were indicated by the red color. All 11 variants in this study and nine variants from the previous study (Amari et al. 2001) were indicated by the numbers with larger font-size in bold. The 11 variants in this study are HSVd-Pl16 (3), HSVd-A2 (5), HSVd-A13 (374), HSVd-A15 (375), HSVd-A25 (376), HSVd-A32 (377), HSVd-A33 (378), HSVd-A43 (379), HSVd-Pl15 (380), HSVd-Pl20 (381), and HSVd-4-Pl2 (382); the nine variants in the previous study were HSVd.apr3 (1), HSVd.p3 (5), HSVd.apr2 (10), HSVd.apr8 (86), HSVd.apr1 (261), HSVd.apr7 (262), HSVd.apr6 (263), HSVd.apr5 (264), HSVd.apr4 (265). (PDF 73 kb)

Supplementary Table 1

The detailed information for the 382 non-redundant HSVd variants. (XLSX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, Y., Chu, H., Kim, H. et al. Comprehensive analysis of genomic variation of Hop stunt viroid . Eur J Plant Pathol 148, 119–127 (2017). https://doi.org/10.1007/s10658-016-1075-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1075-7

Keywords

Navigation