Skip to main content
Log in

Effect of metabolites from different Trichoderma strains on the growth of Rosellinia necatrix, the causal agent of avocado white root rot

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Seven different strains of Trichoderma isolated from avocado roots showed antagonism to Rosellinia necatrix, which is the causal agent of white root rot. We studied these Trichoderma strains on the basis of the secondary metabolites produced in liquid culture. Five different compounds, namely, 6PP (6-pentyl-α-pyrone), Harzianolide (4-hexa-2,4-dienyl-3-(2-hydroxy-propyl)-5H-furan-2-one), T39butenolide (4-hexa-2,4-dienyl-3-(2-oxo-propyl)-5H-furan-2-one), Dehydroharzianolide (4-hexa-2,4-dienyl-3-propenyl-5H-furan-2-one) and Cerinolactone [(3-hydroxy-5-(6-isopropyl-3-methylene-3, 4, 4a, 5, 6, 7, 8, 8a-octahydronaphthalen-2-yl) dihydrofuran-2-one); a recently discovered novel metabolite], were obtained. In vitro studies of the effects of these compounds on different R. necatrix strains isolated from avocado roots and with different virulence demonstrated that 6PP had the strongest effect even at a low concentration. Although unstable, Cerinolactone and T39butenolide also had large effects on R. necatrix, mainly at a concentration of 200 μg. Harzianolide and Dehydroharzianolide exhibited the lowest effects on the pathogen. In vivo studies of Trichoderma metabolites on Lupinus luteus plants demonstrated the delay of white root rot epidemic through preventive application of 6PP or Harzianolide to seeds or plantlets by immersion in solutions of these metabolites at 1 mg l−1 (minimum effective dosage). In contrast, Cerinolactone only was effective at 10 mg l−1 when applied by plantlet immersion. Thus, this study reports the role that these metabolites could play for controlling avocado white root rot caused by R. necatrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almassi, F., Ghisalberti, E. L., Narbey, M., & Sivasisthamparan, K. (1991). New antibiotics from strains of Trichoderma harzianum. Journal of Natural Products, 54, 396–402.

    Article  CAS  Google Scholar 

  • Claydon, N., Allan, M., Hanson, J. R., & Avent, A. G. (1987). Antifungal alkyl pyrones of Trichoderma harzianum. Transactions of the British Mycological Society, 88, 503–513.

    Article  CAS  Google Scholar 

  • Cleland, R. (1972). The dosage-response curve for auxin-induced cell elongation: a re-evaluation. Planta, 104, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Collins, R. P., & Halim, A. F. (1972). Characterization of the major aroma constituent of the fungus Trichoderma viride (Pers.). Journal of Agriculture Food Chemistry, 20, 437–438.

    Article  CAS  Google Scholar 

  • Contreras-Cornejo, H. A., Macias-Rodriguez, L., Cortes-Penagos, C., & Lopez-Bucio, J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, 149, 1579–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunlop, R. W., Simon, A., Sivasisthamparan, K., & Ghisalberti, E. L. (1989). An antibiotic from Trichoderma koningii active against soil-borne plant pathogens. Journal of Natural Products, 52, 67–74.

    Article  CAS  Google Scholar 

  • El-Hassan, A., & Buchenauer, H. (2009). Actions of 6-pentyl-alpha-pyrone in controlling seedling blight incited by Fusarium moniliforme and inducing defence responses in maize. Journal of Phytopatology, 157, 697–707.

    Article  Google Scholar 

  • El-Hassan, A., Walker, F., Schöne, J., & Buchenauer, H. (2009). Detection of viridiofugin a and other antifungal metabolites excreted by Trichoderma harzianum active against different plant pathogens. European Journal of Plant Pathology, 124, 457–470.

    Article  Google Scholar 

  • Fernández-Escobar, R., Trapero, A., Domínguez, J. (2010). Experimentación en Agricultura. (Ed) Consejería de Agricultura y Pesca. Junta de Andalucía. p 350.

  • Ghisalberti, E. L., Narbey, M. J., Dewan, M. M., & Sivasithamparam, K. (1990). Variability among strains of Trichoderma harzianum in their ability to reduce take-all and to produce pyrones. Plant and Soil, 121, 287–291.

    Article  CAS  Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species opportunistic, avirulent plant symbionts. Nature Reviews of Microbiology, 2, 43–56.

    Article  CAS  Google Scholar 

  • Hjeljord, L., Tronsmo, A. (1998). Trichoderma and Gliocladium biological control: an overwiew: Trichoderma and Gliocladium. Basic biology, taxonomy and genetics. In C. P. Kubicek G. E. Harman (Eds.). Taylor and Francis Ltd. (pp. 131–152).

  • Howell C. R (1998). The role of antibiosis in biocontrol: Trichoderma and Gliocladium. Basic biology, taxonomy and genetics. In C. P. Kubicek, Harman G. E. (eds.) Taylor and Francis Ltd. (pp. 173–184).

  • López Herrera, C.J (1998). Hongos de suelo en el cultivo del aguacate del litoral andaluz. V Jornadas Andaluzas de Frutos Tropicales (pp. 139–152).

  • López Herrera, C. J., & Zea Bonilla, T. (2007). Effects of benomyl, carbendazim, fluazinam and thiophanate methyl on white root rot of avocado. Crop Protection, 26, 1186–1192.

    Article  Google Scholar 

  • López, M., Ruano Rosa, D., López Herrera, C. J., Monte, E., & Hermosa, R. (2008). Intraspecific diversity within avocado field isolates of Rosellinia necatrix from south-east Spain. European Journal of Plant Pathology, 121, 201–205.

    Article  Google Scholar 

  • Ruano Rosa, D., & López Herrera, C. J. (2009). Evaluation of Trichoderma spp. as biocontrol agents against avocado white root rot. Biological Control, 51, 66–71.

    Article  Google Scholar 

  • Ruano Rosa, D., del Moral Navarrete, L., & Lopez Herrera, C. J. (2010). Selection of Trichoderma spp. isolates antagonistic to Rosellinia necatrix. Spanish Journal of Agriculture Research, 8, 1084–1097.

    Article  Google Scholar 

  • Steel, R. G. D., & Torrie, J. H. (1985). Bioestadística: principios y procedimientos, 1ª ed en español (p. 622). Interamericana de México: McGraw-Hill.

    Google Scholar 

  • Uetake, Y., Nakamura, H., Arakawa, M., Okabe, I., & Matsumoto, N. (2001). Inoculation of lupinus luteus with white root rot fungus, Rosellinia necatrix, to estimate virulence. Journal of Genetic Plant Pathology, 67, 285–287.

  • Vargas, W. A., Mandawe, J. C., & Kenerley, C. M. (2009). Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiology, 151, 792–808.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vargas, W. A., Crutcher, F. K., & Kenerley, C. M. (2011). Functional characterization of a plant-like sucrose transporter from the beneficial fungus Trichoderma virens. Regulation of the symbiotic association withplants by sucrose metabolism inside the fungal cells. New Phytology, 189, 777–89.

    Article  CAS  Google Scholar 

  • Vinale, F., Marra, R., Scala, F., Ghisalberti, E. L., Lorito, M., & Sivasithamparam, K. (2006). Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Letters on Applied Microbiology, 43, 143–148.

    Article  CAS  Google Scholar 

  • Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Barbetti, M. J., Li, H., Woo, S., & Lorito, M. (2008a). A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiology and Molecular Plant Pathology, 72, 80–86.

    Article  CAS  Google Scholar 

  • Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008b). Trichoderma–plant–pathogen interactions. Soil Biology Biochemistry, 40, 1–10.

    Article  CAS  Google Scholar 

  • Vinale, F., Ghisalberti, E. L., Sivasithamparam, K., Marra, R., Ritieni, A., Ferracane, R., Woo, S., & Lorito, M. (2009). Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Letters on Applied Microbiology, 48, 705–711.

    CAS  Google Scholar 

  • Vinale, F., Arjona Girona, I., Nigro, M., Mazzei, P., Piccolo, A., Ruocco, M., Woo, S., Ruano Rosa, D., López Herrera, C. J., & Lorito, M. (2012a). Cerinolactone, a hydroxy-lactone derivative from Trichoderma cerinum. Journal of Natural Products, 75, 103–106.

  • Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Ruocco, M., Woo, S., & Lorito, M. (2012b). Trichoderma secondary metabolites that affect plant metabolism. Natural Products Communications, 7(11), 1545–1550.

    CAS  Google Scholar 

  • Zentmyer, G. A. (1984). Avocado diseases. Trop Pest Management, 30, 388–400.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the CICE-Junta de Andalucía grant (Grupo PAIDI, AGR-235) and by the Spanish Plan Nacional I + D + I from Ministerio de Ciencia e Innovación (Grant AGL 2008-05453-C02-02/AGR and AGL 2011-030354-CO2-02). In addition, this research was co-financed by FEDER funds (EU). The authors thank M. de Juan Santolalla for her help in the fungal filtrate extractions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. López-Herrera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1856 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjona-Girona, I., Vinale, F., Ruano-Rosa, D. et al. Effect of metabolites from different Trichoderma strains on the growth of Rosellinia necatrix, the causal agent of avocado white root rot. Eur J Plant Pathol 140, 385–397 (2014). https://doi.org/10.1007/s10658-014-0472-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0472-z

Keywords

Navigation