Skip to main content
Log in

Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A series of experiments were performed to study the effects of silicon (Si) on rice blast development, H2O2 accumulation and lipid peroxidation in a controlled rice—Magnaporthe grisea pathosystem. Rice plants supplied with Si as a single dose immediately after pathogen inoculation (−/+Si) exhibited the same high protection against disease as plants treated continuously with Si for the whole growth period (+/+Si), with disease severity indices of 20.8% and 19.6%, respectively, which were significantly lower than that for the control treatment with no Si supplied (63.7%). A single application of Si to rice plants before inoculation (+/−Si) conferred partial protection (disease severity index of 33.3%) compared with the control treatment. Silicon induced a rapid but transient burst of H2O2 at 24 h after inoculation. The addition of Si to rice plants significantly altered the activities of catalase and lipoxygenase and the concentration of malodialdehyde (indicative of lipid peroxidation) in rice plants. We propose that rice plants may respond to Si by increased H2O2 accumulation and lipid peroxidation. In turn, these responses are linked to host defence mechanisms such as lignin production, oxidative cross-linking in the cell wall, phytoalexin production, and the hypersensitive reaction. Thus, the mechanisms of Si-stimulated plant disease protection may extend beyond its established role in physically strengthening cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AOS:

active oxygen species

CAT:

catalase

EC:

electrolytic conductivity

HR:

hypersensitive reaction

LOX:

lipoxygenase

MDA:

malondialdehyde

Si:

silicon

References

  • Baker, C. J., & Orlandi, E. W. (1995). Active oxygen in plant pathogenesis. Annual Review of Phytopathology, 33, 299–321.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Cai, K. Z., Gao, D., Luo, S. M., Zeng, R. S., Yang, J. Y., & Zhu, X. Y. (2008). Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiologia Plantarum, 134, 324–333.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98, 1222–1227.

    Article  CAS  PubMed  Google Scholar 

  • Croft, K. P. C., Voisey, C. R., & Slusarento, A. J. (1990). Mechanisms of hypersensitive cell collapse: correlation of increased lipeoxygenase activity with membrane damage in leaves of Phaseolus vulgaris(L.) inoculated with an avirulent race of Pseudomonas syringae pv. phaseolicola. Physiological and Molecular Plant Pathology, 36, 49–62.

    Article  CAS  Google Scholar 

  • Dannon, E., & Wydra, K. (2004). Interaction between silicon amendment, bacterial wilt development and phenotype of Ralstonia solanacearum in tomato genotypes. Physiological and Molecular Plant Pathology, 64, 233–243.

    Article  CAS  Google Scholar 

  • Datnoff, L. E., Seebold, K. W., & Correa, V. F. J. (2001). The use of silicon for integrated disease management: reducing fungicide applications and enhancing host plant resistance. In L. E. Datnoff, G. H. Snyder, & G. H. Korndörfer (Eds.), Silicon in agriculture (pp. 171–183). The Netherlands: Elsevier Science.

    Chapter  Google Scholar 

  • Diogo, R. V. C., & Wydra, K. (2007). Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiological and Molecular Plant Pathology, 70, 120–129.

    Article  CAS  Google Scholar 

  • Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings of National Academy of Sciences of the United States of America, 91, 11–17.

    Article  CAS  Google Scholar 

  • Fawe, A., Menzies, J. G., Cherif, M., & Bélanger, R. R. (2001). Silicon and disease resistance in dicotyledons. In L. E. Datnoff, G. H. Snyder, & G. H. Korndörfer (Eds.), Silicon in agriculture (pp. 159–169). The Netherlands: Elsevier Science.

    Chapter  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2005). Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment, 28, 1066–1071.

    Article  Google Scholar 

  • Hiltunen, L. H., Weckman, A., Ylhäinen, A., Rita, H., Richter, E., & Valkonen, J. P. T. (2005). Responses of potato cultivars to the common scab pathogens, Streptomyces scabies and S. turgidiscabies. Annals of Applied Biology, 146, 395–403.

    Article  Google Scholar 

  • Jaleel, C. A., Manivannan, P., Sankar, B., Kishorekumar, A., & Panneerselvam, R. (2007). Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. Comptes Rendus Biologies, 330, 674–683.

    Article  CAS  PubMed  Google Scholar 

  • Keppler, L. D., & Novacky, A. (1987). The initiation of membrane lipid peroxidation during bacteria-induced hypersensitive reaction. Physiological and Molecular Plant Pathology, 30, 233–245.

    Article  CAS  Google Scholar 

  • Kim, S. G., Kim, K. W., Park, E. W., & Choi, D. (2002). Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 92, 1095–1103.

    Article  PubMed  Google Scholar 

  • Lamb, C., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Physiological and Molecular Plant Pathology, 48, 251–275.

    Article  CAS  Google Scholar 

  • Li, Y. F., & Wang, Z. Z. (2005). Membrane lipid peroxidation and protective enzymes activity induced in rice leaves by GP66 elicitor from Magnaporthe grisea. Acta Phytopathologica Sinica, 35, 43–48 (In Chinese with English Abstract).

    Google Scholar 

  • Liang, Y. C. (1999). Effects of silicon on enzyme activity, and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil, 209, 217–224.

    Article  CAS  Google Scholar 

  • Liang, Y. C., Chen, Q., Liu, Q., Zhang, W. H., & Ding, R. X. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 160, 1157–1164.

    Article  CAS  PubMed  Google Scholar 

  • Liang, Y. C., Sun, W. C., Si, J., & Römheld, V. (2005). Effect of foliar- and root-applied silicon on the enhancement of induced resistance in Cucumis sativus to powdery mildew. Plant Pathology, 54, 678–685.

    Article  CAS  Google Scholar 

  • Liang, Y. C., Hua, H. X., Zhu, Y. G., Zhang, J., Cheng, C. M., & Römheld, V. (2006). Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytologist, 172, 63–72.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J. F., Miyake, Y., & Takahashi, E. (2001). Silicon as a beneficial element for crop plants. In L. E. Datnoff, G. H. Snyder, & G. H. Korndörfer (Eds.), Silicon in agriculture (pp. 17–39). The Netherlands: Elsevier Science.

    Chapter  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Ou, S. H. (1985). Rice diseases (2nd ed.). Kew: Commonwealth Agricultural Bureau.

    Google Scholar 

  • Rodrigues, F. A., McNally, D. J., Datnoff, L. E., Jones, J. B., Labbé, C., Benhamou, N., et al. (2004). Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology, 94, 177–183.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, F. A., Jurick, W. M., Datnoff, L. E., Jones, J. B., & Rollins, J. A. (2005). Silicon influences cytological and molecular events in compatible rice-Magnaporthe grisea interactions. Physiological and Molecular Plant Pathology, 66, 144–159.

    Article  CAS  Google Scholar 

  • Rustérucci, C., Stallaert, V., Milat, M. L., Pugin, A., Ricci, P., & Blein, J. P. (1996). Relationship between active oxygen species, lipid peroxidation, necrosis, and phytoalexin production induced by elicitins in Nicofiana. Plant Physiology, 111, 885–891.

    PubMed  Google Scholar 

  • Samuels, A. L., Glass, A. D. M., Ehret, D. L., & Menzies, J. G. (1991). Mobility and deposition of silicon in cucumber plants. Plant Cell, and Environment, 14, 485–492.

    Article  Google Scholar 

  • Schützendübel, A., & Polle, A. (2002). Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53, 1351–1365.

    Article  PubMed  Google Scholar 

  • Seebold, K. W., Datnoff, L. E., Correa-Victoria, F. J., Kucharek, T. A., & Snyder, G. H. (2004). Effects of silicon and fungicides on the control of leaf and neck blast in upland rice. Plant Disease, 88, 253–258.

    Article  CAS  Google Scholar 

  • Sekizawa, Y., Hamyama, T., Kano, H., Urushizaki, S., Saka, H., Matsumoto, K., et al. (1990). Dependence on ethylene of the induction of peroxidase and lipoxygenase activity in rice leaf infected with blast fungus. Agricultural and Bio1ogical. Chemistry, 54, 471–478.

    CAS  Google Scholar 

  • Silue, D., Notteghem, J. L., & Tharreau, D. (1992). Evidence of a gene-for-gene relationship in the pathosystem Oryza sativa-Magnaporthe grisea. Phytopathology, 82, 577–580.

    Article  Google Scholar 

  • Wang, J. F., He, X. J., Zhang, H. S., & Chen, Z. Y. (2002). Genetic analysis of blast resistance in japonica rice landrace Heikezijing from Taihu region. Acta Genetica Sinica, 29, 803–807 (In Chinese with English Abstract).

    CAS  PubMed  Google Scholar 

  • Wojtaszek, P. (1997). Oxidative burst: an early plant response to pathogen infection. Biochemical Journal, 322, 681–692.

    CAS  PubMed  Google Scholar 

  • Yan, B., Dai, Q. J., Liu, X. Z., Huang, S. B., & Wang, Z. X. (1996). Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant and Soil, 179, 261–268.

    Article  CAS  Google Scholar 

  • Zhao, S. J., & Li, D. Q. (1999). The determination of malondialdehyde (MDA). In Institute of Plant Physiology, Chinese Academy of Sciences & The Shanghai Society for Plant Physiology (Ed.), Experimental manual of modern plant physiology (pp. 305–306). Beijing: Science Press.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the grant from National Natural Science Foundation of China (30671210). The authors are grateful to Dr. Steven A. Wakelin from Centre for Environmental Contaminants Research, CSIRO Land and Water, Australia, for critically reading the manuscript, and to the anonymous referees and the editor for their careful review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchao Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, W., Zhang, J., Fan, Q. et al. Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier. Eur J Plant Pathol 128, 39–49 (2010). https://doi.org/10.1007/s10658-010-9625-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9625-x

Keywords

Navigation