Skip to main content
Log in

Response of tomato rootstocks carrying the Mi-resistance gene to populations of Meloidogyne arenaria, M. incognita and M. javanica

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The response of four Mi-resistance gene tomato rootstocks to seven populations of Meloidogyne was determined in pot tests conducted in a glasshouse. Rootstocks PG76 (Solanum lycopersicum × Solanum sp.) and Brigeor (S. lycopersicum × S. habrochaites) and resistant cv. Monika (S. lycopersicum) were assessed against one population of M. arenaria, three of M. incognita, and three of M. javanica. Rootstocks Beaufort and Maxifort were assessed against one population of M. arenaria, two of M. incognita and two of M. javanica. Rootstock PG76 was highly resistant (reproduction index <10%) to all the populations, whereas rootstock Brigeor and cv. Monika were highly to moderate resistant. Rootstocks Beaufort and Maxifort showed reduced resistance or inability to suppress nematode reproduction, and their responses varied according to the population tested. Beaufort and Maxifort were susceptible to the two populations of M. javanica as Maxifort was to one of M. incognita. The reproduction index of the nematode was higher (P < 0.05) on Maxifort than Beaufort for all root-knot nematode populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Besri, M. (2003). Tomato grafting as an alternative to methyl bromide in Marocco. Proceedings of the 2003 Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions, San Diego, Ca, USA.

  • Bhattarai, K. K., Li, Q., Liu, Y., Dinesh-Kumar, S. P., & Kaloshian, I. (2007). The Mi-1-mediated pest resistance requires Hsp90 and Sgt1[OA]. Plant Physiology, 44, 312–323. doi:10.1104/pp.107.097246.

    Article  Google Scholar 

  • Castagnone-Sereno, P. (2002). Genetic variability of nematodes: a threat to the durability of plant resistance genes? Euphytica, 124, 193–199. doi:10.1023/A:1015682500495.

    Article  CAS  Google Scholar 

  • Cortada, L., Sorribas, F. J., Ornat, C., Kaloshian, I., & Verdejo-Lucas, S. (2008). Variability in infection and reproduction of Meloidogyne javanica on tomato rootstocks with the Mi resistance gene. Plant Pathology. doi:10.1111/j.1365-3059.2008.01906.x.

  • Dropkin, V. H. (1969). The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne: reversal by temperature. Phytopathology, 59, 1632–1637.

    Google Scholar 

  • Fuller, V. L., Lilley, C. J., & Urwin, P. E. (2008). Nematode resistance. Tansley Review. The New Phytologist. doi:10.1111/j.1469-8137.2008.02508.

  • Graf, V., Augustin, B., & Laun, N. (2001). Sicherheit vor Wurzelgallenälchen und Korkwurzelkrankheit. Pflanzenschutz, 3, 8–12.

    Google Scholar 

  • Hadisoeganda, W. W., & Sasser, J. N. (1982). Resistance of tomato, bean, southern pea, and garden pea cultivars to root-knot nematodes based on host suitability. Plant Disease, 66, 145–150.

    Google Scholar 

  • Hussey, R. S., & Barker, K. R. (1973). A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease, 57, 1025–1028.

    Google Scholar 

  • Jarquin-Barberena, H., Dalmasso, A., de Guiran, G., & Cardin, M. C. (1991). Acquired virulence in the plant parasitic nematode Meloidogyne incognita. 1 Biological analysis of the phenomenon. Revue of Nematology, 14, 261–275.

    Google Scholar 

  • Jacquet, M., Bongiovanni, M., Martínez, M., Verschave, P., Wajnberg, E., & Castagnone-Sereno, P. (2005). Variation in resistance to the rot-knot nematode Meloidogyne incognita in tomato genotypes bearing the Mi gene. Plant Pathology, 54, 93–99. doi:10.1111/j.1365-3059.2005.01143.x.

    Article  Google Scholar 

  • Liharska, T. (1998). Genetic and molecular analysis of the tomato root-knot nematode resistance locus Mi-1. The Netherlands: Agricultural University, Wageningen.

  • López-Pérez, J., Le Strange, M., Kaloshian, I., & Ploeg, A. (2006). Differential response of Mi gene-resistant tomato rootstocks to root-knot nematodes (Meloidogyne incognita). Crop Protection (Guildford, Surrey), 25, 382–388. doi:10.1016/j.cropro.2005.07.001.

    Article  Google Scholar 

  • Marín Rodríguez, J. (2005). Portagrano. Vademecum de variedades hortícolas. El Ejido, Almería, Spain: Escobar impresores.

    Google Scholar 

  • Martínez de Ilarduya, O., Nombela, G., Hwang, C. F., Williamson, V. M., Muñiz, M., & Kaloshian, I. (2004). Rme1 is specific for Mi-mediated resistance and acts early in the resistance pathway. Molecular Plant-Microbe Interactions, 17, 55–61. doi:10.1094/MPMI.2004.17.1.55.

    Article  PubMed  Google Scholar 

  • Ornat, C., Verdejo-Lucas, S., & Sorribas, F. J. (2001). A population of Meloidogyne javanica in Spain virulent to the resistance gene Mi in tomato. Plant Disease, 85, 271–276. doi:10.1094/PDIS.2001.85.3.271.

    Article  Google Scholar 

  • Roberts, P. A., & Thomason, I. J. (1989). A review of variability in four Meloidogyne spp. measured by reproduction on several hosts including Lycopersicon. Agricultural Zoology Reviews, 3, 225–252.

    Google Scholar 

  • Roberts, P. A., & Thomason, I. J. (1996). Variability in reproduction of isolates of Meloidogyne incognita and M. javanica on resistant tomato genotypes. Plant Disease, 70, 547–541. doi:10.1094/PD-70-547.

    Article  Google Scholar 

  • Seah, S., Tellen, A. C., & Williamson, V. M. (2007a). Introgressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues. Theoretical and Applied Genetics, 114, 1289–1302. doi:10.1007/s00122-007-0519-z.

    Article  PubMed  CAS  Google Scholar 

  • Seah, S., Williamson, V. M., Garcia, B. E., Mejía, L., Salus, M. S., Martin, C. T., & Maxwell, D. P. (2007b). Evaluation of a co-dominant SCAR marker for detection of the Mi-1 locus for resistance to root-knot nematode in tomato germplasm. Tomato Genetic Cooperative Report, 57, 37–40.

    Google Scholar 

  • Smith, P. G. (1944). Embryo culture of a tomato species hybrid. Proceedings of American Society Horticultural Sciences, 44, 413–416.

    Google Scholar 

  • Sorribas, F. J., & Verdejo-Lucas, S. (1994). Survey of Meloidogyne spp. in tomato fields of the Baix Llobregat County, Spain. Journal of Nematology, 26, 731–736.

    PubMed  CAS  Google Scholar 

  • Sorribas, F. J., & Verdejo-Lucas, S. (1999). Capacidad parasitaria de Meloidogyne spp. en cultivares de tomate resistente. Investigación Agraria: Producción y Protección Vegetales, 14, 237–247.

    Google Scholar 

  • Sorribas, F. J., Ornat, C., Verdejo-Lucas, S., Galeano, M., & Valero, J. (2005). Effectiveness and profitability of the Mi-resistant tomatoes to control root-knot nematodes. European Journal of Plant Pathology, 111, 29–38. doi:10.1007/s10658-004-1982-x.

    Article  Google Scholar 

  • Tzortzakakis, E. A., Trudgill, D. L., & Phillips, M. S. (1998). Evidence for a dosage effect of the Mi gene on partially virulent isolates of Meloidogyne javanica. Journal of Nematology, 30, 76–80.

    PubMed  CAS  Google Scholar 

  • Tzortzakakis, E. A., Bletsos, F. A., & Avgelis, A. D. (2006). Evaluation of Solanum rootstock accessions for control of root-knot nematodes and tobamoviruses. Journal of Plant Diseases and Protection, 113, 188–189.

    Google Scholar 

  • Verdejo-Lucas, S., & Sorribas, F. J. (2008). Resistance response of the tomato rootstock SC 6301 to Meloidogyne javanica in a plastic house. European Journal of Plant Pathology, 121, 103–107. doi:10.1007/s10658-007-9243-4.

    Article  Google Scholar 

  • Verdejo-Lucas, S., Ornat, C., Sorribas, F. J., & Stchiegel, A. (2002). Species of root-knot nematodes and fungal egg parasites recovered from vegetables in Almería and Barcelona, Spain. Journal of Nematology, 34, 405–408.

    PubMed  CAS  Google Scholar 

  • Williamson, V. M., & Kumar, A. (2006). Nematode resistance in plants: the battle underground. Trends in Genetics, 22, 396–403. doi:10.1016/j.tig.2006.05.003.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, V. M., Ho, J. Y., Wu, F. F., Miller, N., & Kaloshian, I. (1994). A PCR-based marker tightly linked to the nematode resistance gene Mi in tomato. Theoretical and Applied Genetics, 87, 757–763. doi:10.1007/BF00221126.

    Article  CAS  Google Scholar 

  • Zijlstra, C., Donkers-Venne, D. T. H. M., & Fargette, M. (2000). Identification of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterized amplified region (SCAR) based PCR assays. Nematology, 2, 847–853. doi:10.1163/156854100750112798.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Fundación Ramón Areces for financial support. The first author received a pre-doctoral grant from Instituto Nacional de Investigaciones Agrarias of Spain to carry out this research. Thanks are given to O. Simon, O. Jurado and V. Barnés for the technical assistance and P. Manzano for help with the graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soledad Verdejo-Lucas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortada, L., Sorribas, F.J., Ornat, C. et al. Response of tomato rootstocks carrying the Mi-resistance gene to populations of Meloidogyne arenaria, M. incognita and M. javanica . Eur J Plant Pathol 124, 337–343 (2009). https://doi.org/10.1007/s10658-008-9413-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-008-9413-z

Keywords

Navigation