Skip to main content

Advertisement

Log in

Control of plant diseases by natural products: Allicin from garlic as a case study

  • Full Research Paper
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

This review aims to increase awareness of the potential for developing plant protection strategies based on natural products. Selected examples of commercial successes are given and recent data from our own laboratory using allicin from garlic are presented. The volatile antimicrobial substance allicin (diallylthiosulphinate) is produced in garlic when the tissues are damaged and the substrate alliin (S-allyl-l-cysteine sulphoxide) mixes with the enzyme alliin-lyase (E.C.4.4.1.4). Allicin is readily membrane-permeable and undergoes thiol-disulphide exchange reactions with free thiol groups in proteins. It is thought that these properties are the basis of its antimicrobial action. We tested the effectiveness of garlic juice against a range of plant pathogenic bacteria, fungi and oomycetes in vitro. Allicin effectively controlled seed-borne Alternaria spp. in carrot, Phytophthora leaf blight of tomato and tuber blight of potato as well as Magnaporthe on rice and downy mildew of Arabidopsis. In Arabidopsis the reduction in disease was apparently due to a direct action against the pathogen since no accumulation of salicylic acid (a marker for systemic acquired resistance, SAR) was observed after treatment with garlic extract. We see a potential for developing preparations from garlic for use in organic farming, e.g. for reducing the pathogen inoculum potential in planting material such as seeds and tubers. We have tested various encapsulation formulations in comparison to direct treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbott, W. S. (1925). A method for computing the effectiveness of an insecticide. Journal of Econonomic Entomology, 18, 265–267.

    CAS  Google Scholar 

  • Aldhous, P. (1992). Neem chemical: The pieces fall in place. Science, 258, 893.

    Article  PubMed  Google Scholar 

  • Arya, A., Chauhan, R., & Arya, C. (1995). Effect of allicin and extracts of garlic and bignonia on two fungi. Indian Journal of Mycology and Plant Pathology, 25, 316–318.

    Google Scholar 

  • Bianchi, A., Zambonelli, A., Zechini D’Aulerio, A., & Bellesia, F. (1997). Ultrastructural studies of the effects of Allium sativum on phytopathogenic fungi in vitro. Plant Disease, 81, 1241–1246.

    Article  CAS  Google Scholar 

  • Block, E. (1985). The chemistry of garlic and onions. Scientific American, 252, 94–99.

    Article  Google Scholar 

  • Bradford, K. J. (1999). Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience, 21, 1105–1112.

    Google Scholar 

  • Butterworth, J. H., & Morgan, E. D. (1968). Isolation of a substance that suppresses feeding in locusts. Chemical Communications (London), 23–24.

  • Cao, K.-Q., & vanBruggen, A. H. C. (2001). Inhibitory efficacy of several plant extracts and plant products on Phytophthora infestans. Journal of Agricultural University of Hebei, 24, http://www.cipotato.org/gilb/Pubs/proceedings_easa/caokeqiang%2821%29.pdf.

  • Canizares, P., Gracia, I., Gomez, L. A., Garcia, A., de Argila, C. M., & Boixeda, D., et al. (2004). Thermal degradation of allicin in garlic extracts and its implication on the inhibition of the in-vitro growth of Helicobacter pylori. Biotechnology Progress, 20, 32–37.

    Article  PubMed  CAS  Google Scholar 

  • Carpinella, M. C., Ferrayoli, C. G., & Palacios, M. S. (2003). Antimycotic Activity of the Members of Meliaceae. In M. Rai, & D. Mares (Eds.) Plant-derived antimycotics (pp. 81–115). New York: Food Products.

    Google Scholar 

  • Cavallito, C. J., & Bailey, H. J. (1944). Allicin, the antibacterial principle of Allium sativum L. Isolation, physical properties and antibacterial action. Journal of the American Chemical Society, 66, 1950–1951.

    Article  CAS  Google Scholar 

  • Curtis, H., Noll, U., Störmann, J., & Slusarenko, A. J. (2004). Broad-spectrum activity of the volatile phytoanticipin allicin in extracts of garlic (Allium sativum L.) against plant pathogenic bacteria, fungi and Oomycetes. Physiological and Molecular Plant Pathology, 65, 79–89.

    Article  CAS  Google Scholar 

  • Fleming, D. O., & Hunt, D. L. (Eds.) (2000). Biological safety: Principles and practices. (ASM Press) p. 267.

  • Fry, F. H., Okarter, N., Baynton-Smith, C., Kershaw, M. J., Talbot, N. J., & Jacob, C. (2005). Use of a substrate/alliinase combination to generate antifungal activity in situ. Journal of Agricultural and Food Chemistry, 53, 574–580.

    Article  PubMed  CAS  Google Scholar 

  • Gao, Y.-P., Young, L., Bonham-Smith, P., & Gusta, L. V. (1999). Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Plant Molecular Biology, 40, 635–644.

    Article  PubMed  CAS  Google Scholar 

  • Goellner, K., & Conrath, U. (2007). Priming: It’s all the world to induced disease resistance EJPP this issue.

  • Grasso, V., Palermo, S., Sierotzki, H., Garibaldi, A., & Gisi, U. (2006). Cytochrome b gene structure and consequences for resistance to Qo inhibitor fungicides in plant pathogens. Pest Management Science, 62, 465–472.

    Article  PubMed  CAS  Google Scholar 

  • Jain, M. K., & Apitz-Castro, R. (1987). Garlic: molecular basis of the putative ‘vampire-repellant’ action and other matters related to heart and blood. Trends in Biochemical Science, 12, 252–254.

    Article  CAS  Google Scholar 

  • Krest, I., & Keusgen, M. (2002). Biosensoric flow-through method for the determination of cysteine sulfoxides. Analytica Chimica Acta, 469, 155–164.

    Article  CAS  Google Scholar 

  • Ley, S. V. (1994). Synthesis and chemistry of the insect antifeedant azadirachtin. Pure & Applied Chemistry, 66, 2099–2102.

    Article  CAS  Google Scholar 

  • Mansfield, J. (2000). Antimicrobial compounds and resistance: The role of phytoalexins and phytoanticipins. In A. J. Slusarenko, R. S. S. Fraser, & L. C. van Loon (Eds.) Mechanisms of resistance to plant diseases (pp. 325–370). Dordrecht: Kluwer.

    Google Scholar 

  • Miron, T., Rabinikov, A., Mirelman, D., Wilchek, M., & Weiner, L. (2000). The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochimica et Biophysica Acta, 1463, 20–30.

    Article  PubMed  CAS  Google Scholar 

  • Nicolaou, K. C., Roecker, A. J., Monenschein, H., Guntupalli, P., & Follmann, M. (2003). Studies towards the synthesis of azadirachtin: Enantioselective entry into the azadirachtin framework through cascade reactions. Angewandte Chemie International Edition, 42, 3637–3642.

    Article  CAS  Google Scholar 

  • Patel, A. V., Slaats, B., Hallmann, J., Tilcher, R., Beitzen-Heineke, W., & Vorlop, K. D. (2004). Encapsulation and application of bacterial antagonists and a nematophagous fungus for biological pest control. In J. L. Pedraz, G. Orive, & D. Poncelet (Eds.), Proceedings of the 12th International Workshop on Bioencapsulation, Vitoria, Spain, Servicio Editorial de la Universidad del Pais Vasco (pp. 137–140). ISBN: 84-8373-649-7.

  • Peterson, I., & Anderson, E. A. (2005). The renaissance of natural products as drug candidates. Science, 310, 451–453.

    Article  CAS  Google Scholar 

  • Portz, D., Noll, U., & Slusarenko, A. J. (2005). Allicin from garlic (Allium sativum L.): A new look at an old story. In H.-W. Dehne, U. Gisi, K. H. Kuck, P. E. Russell, & H. Lyr (Eds.) Proceedings of the 14th International Reinhardsbrunn Symposium, Modern Fungicides and Antifungal Compounds IV (pp. 227–234). Alton, U.K.: British Crop Production Council.

    Google Scholar 

  • Rabinikov, A., Miron, T., Konstantinovski, L., Wilchek, M., Mirelman, D., & Weiner, L. (1998). The mode of action of allicin: Trapping of radicals and interaction with thiol containing proteins. Biochimica et Biophysica Acta, 1379, 233–244.

    Google Scholar 

  • Russell, P. E., & Mussa, A. E. A. (1977). The use of garlic (Allium sativum) extracts to control foot rot of Phaseolus vulgaris caused by Fusarium solani f.sp. phaseoli. Annals of Applied Biology, 86, 369–372.

    Article  Google Scholar 

  • Tetko, I. V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., & Ertl, P., et al. (2005). Virtual computational chemistry laboratory—Design and description. Journal of Computer-Aided Molecular Design, 19, 453–463.

    Article  PubMed  CAS  Google Scholar 

  • Wolfgang, L. (1995). Patents on native technology challenged. Science, 269, 1506.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to the kindness of the following people in providing accurate information and helpful comments on various parts of the manuscript: Charlie Delp, Jean-Luc Genet, Harvey Loux, David Morgan, Phil Russell, Nikolaus Schlaich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Slusarenko.

Additional information

Note added in proof: The complete chemical synthesis of azadirachtin has now been achieved. Nature (2007) 448: 630–631

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slusarenko, A.J., Patel, A. & Portz, D. Control of plant diseases by natural products: Allicin from garlic as a case study. Eur J Plant Pathol 121, 313–322 (2008). https://doi.org/10.1007/s10658-007-9232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9232-7

Keywords

Navigation