Skip to main content
Log in

Risk of lung cancer and physical activity by smoking status and body mass index, the Norwegian Women and Cancer Study

  • CANCER
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

We aimed to investigate physical activity (PA) and risk of different histological subtypes of lung cancer according to smoking status and body mass index using repeated measurements in a large cohort of women in Norway. The study sample for the multiple imputation analyses consisted of 86,499 and for the complete-case analysis 80,802 women. Repeated measurements of PA level, smoking habits, weight, and height were available for 54,691 women (63.2%), who were included in repeated measurement analyses combined with multiple imputation to address attrition. Cox proportional hazards regression models were used to calculate hazard ratios with 95% confidence intervals. During a median follow-up of 12.9 years, 866 cases of primary lung cancer were identified. We found an inverse association between PA and lung cancer overall. The results were consistent from multiple imputed data analysis to complete-case analysis of PA and possible confounders. We observed a similar trend for adenocarcinoma, but not for squamous cell or small cell carcinomas. Our findings suggest a more pronounced association between lung cancer overall and PA levels in current and former smokers, and in normal-weight and overweight participants with increasing PA levels. The potential of a modifiable lifestyle factor as PA to reduce the risk of lung cancer independently of smoking status is important in public health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Graham PD, Thigpen SC, Geraci SA. Lung cancer in women. South Med J. 2013;106(10):582–7.

    Article  PubMed  Google Scholar 

  2. Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomark Prev. 2016;25(1):16–27. https://doi.org/10.1158/1055-9965.Epi-15-0578.

    Article  Google Scholar 

  3. Cancer Registry of Norway. Cancer in Norway 2015—cancer incidence, mortality, survival and prevalence in Norway. Oslo: Cancer Registry of Norway; 2016.

    Google Scholar 

  4. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86. https://doi.org/10.1002/ijc.29210.

    Article  CAS  PubMed  Google Scholar 

  5. Buffart LM, Singh AS, van Loon ECP, Vermeulen HI, Brug J, Chinapaw MJM. Physical activity and the risk of developing lung cancer among smokers: a meta-analysis. J Sci Med Sport. 2014;17(1):67–71. https://doi.org/10.1016/j.jsams.2013.02.015.

    Article  PubMed  Google Scholar 

  6. Khuder SA, Mutgi AB. Effect of smoking cessation on major histologic types of lung cancer. Chest. 2001;120(5):1577–83. https://doi.org/10.1378/chest.120.5.1577.

    Article  CAS  PubMed  Google Scholar 

  7. Hansen MS, Licaj I, Braaten T, Langhammer A, Le Marchand L, Gram IT. Sex differences in risk of smoking—associated lung cancer: results from a Cohort of 600,000 Norwegians. Am J Epidemiol. 2017;187(5):971–81. https://doi.org/10.1093/aje/kwx339.

    Article  Google Scholar 

  8. Jemal A, Miller KD, Ma J, Siegel RL, Fedewa SA, Islami F, et al. Higher lung cancer incidence in young women than young men in the United States. N Engl J Med. 2018;378(21):1999–2009. https://doi.org/10.1056/NEJMoa1715907.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Duan P, Hu C, Quan C, Yi X, Zhou W, Yuan M et al. Body mass index and risk of lung cancer: systematic review and dose-response meta-analysis. Sci Rep. 2015;5:16938. https://doi.org/10.1038/srep16938. https://www.nature.com/articles/srep16938#supplementary-information.

  10. Vainio H, Bianchini F. IARC Handbooks of cancer prevention. Volume 6: weight control and physical activity. IARC Handbooks of Cancer Prevention. France: IARC Press; 2002.

  11. World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington DC: AICR; 2007.

    Google Scholar 

  12. World Cancer Research Fund/American Institute for Cancer Research. Diet, Nutrition, Physical Activity, and Cancer: a Global perspective. Continuous Update Project Expert Report; 2018. http://www.dietandcancerreport.org.

  13. Tardon A, Lee WJ, Delgado-Rodriguez M, Dosemeci M, Albanes D, Hoover R, et al. Leisure-time physical activity and lung cancer: a meta-analysis. Cancer Causes Control. 2005;16(4):389–97. https://doi.org/10.1007/s10552-004-5026-9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Koutsokera A, Kiagia M, Saif MW, Souliotis K, Syrigos KN. Nutrition habits, physical activity, and lung cancer: an authoritative review. Clin Lung Cancer. 2013;14(4):342–50. https://doi.org/10.1016/j.cllc.2012.12.002.

    Article  PubMed  Google Scholar 

  15. Sun J-Y. Physical activity and risk of lung cancer: a meta-analysis of prospective cohort studies. Asian Pac J Cancer Prev. 2012;13(7):3143–7.

    Article  PubMed  Google Scholar 

  16. Zhong S, Ma T, Chen L, Chen W, Lv M, Zhang X, et al. Physical activity and risk of lung cancer: a meta-analysis. Clin J Sport Med. 2016;26(3):173–81.

    Article  PubMed  Google Scholar 

  17. Brenner DR, Yannitsos DH, Farris MS, Johansson M, Friedenreich CM. Leisure-time physical activity and lung cancer risk: a systematic review and meta-analysis. Lung Cancer. 2016;95:17–27. https://doi.org/10.1016/j.lungcan.2016.01.021.

    Article  PubMed  Google Scholar 

  18. Emaus A, Thune I. Physical activity and lung cancer prevention. In: Courneya KS, Friedenreich CM, editors. Physical activity and cancer. Berlin: Springer; 2011. p. 101–33.

    Google Scholar 

  19. Sprague BL, Trentham-Dietz A, Klein BEK, Klein R, Cruickshanks KJ, Lee KE, et al. Physical activity, white blood cell count, and lung cancer risk in a prospective cohort study. Cancer Epidemiol Biomark Prev. 2008;17(10):2714–22. https://doi.org/10.1158/1055-9965.epi-08-0042.

    Article  Google Scholar 

  20. Kubík AK, Zatloukal P, Tomášek L, Pauk N, Havel L, Krepela E, et al. Dietary habits and lung cancer risk among non-smoking women. Eur J Cancer Prev. 2004;13(6):471–80.

    Article  PubMed  Google Scholar 

  21. Sinner P, Folsom AR, Harnack L, Eberly LE, Schmitz KH. The association of physical activity with lung cancer incidence in a cohort of older women: the Iowa Women’s Health Study. Cancer Epidemiol Biomark Prev. 2006;15(12):2359–63. https://doi.org/10.1158/1055-9965.epi-06-0251.

    Article  Google Scholar 

  22. Leitzmann MF, Koebnick C, Abnet CC, Freedman ND, Park Y, Hollenbeck A, et al. Prospective study of physical activity and lung cancer by histologic type in current, former, and never smokers. Am J Epidemiol. 2009;169(5):542–53. https://doi.org/10.1093/aje/kwn371.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lam TK, Moore SC, Brinton LA, Smith L, Hollenbeck AR, Gierach GL, et al. Anthropometric measures and physical activity and the risk of lung cancer in never-smokers: a prospective cohort study. PLoS ONE. 2013;8(8):e70672. https://doi.org/10.1371/journal.pone.0070672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lund E, Dumeaux V, Braaten T, Hjartåker A, Engeset D, Skeie G, et al. Cohort profile: The Norwegian Women and Cancer Study (NOWAC) Kvinner og kreft. Int J Cancer. 2008;37(1):36–41. https://doi.org/10.1093/ije/dym137.

    Article  Google Scholar 

  25. Lund E, Kumle M, Braaten T, Hjartåker A, Bakken K, Eggen A, et al. External validity in a population-based national prospective study—the Norwegian Women and Cancer Study (NOWAC). Cancer Causes Control. 2003;14(10):1001–8. https://doi.org/10.1023/B:CACO.0000007982.18311.2e.

    Article  PubMed  Google Scholar 

  26. Borch KB, Ekelund U, Brage S, Lund E. Criterion validity of a 10-category scale for ranking physical activity in Norwegian women. Int J Behav Nutr Phys Act. 2012;9(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  27. WHO. International statistical classification of diseases and related health problems 10th Revision. http://apps.who.int/classifications/icd10/browse/2015/en. 2010. Accessed 13 Nov 2017.

  28. Hu P, Tsiatis AA, Davidian M. Estimating the parameters in the Cox model when covariate variables are measured with error. Biometrics. 1998;54(4):1407–19. https://doi.org/10.2307/2533667.

    Article  CAS  PubMed  Google Scholar 

  29. Thiébaut ACM, Bénichou J. Choice of time-scale in Cox’s model analysis of epidemiologic cohort data: a simulation study. Stat Med. 2004;23(24):3803–20. https://doi.org/10.1002/sim.2098.

    Article  PubMed  Google Scholar 

  30. White IR, Royston P. Imputing missing covariate values for the Cox model. Stat Med. 2009;28(15):1982–98. https://doi.org/10.1002/sim.3618.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Borch KB, Weiderpass E, Braaten T, Jareid M, Gavrilyuk OA, Licaj I. Physical activity and risk of endometrial cancer in the Norwegian Women and Cancer (NOWAC) study. Int J Cancer. 2017;140(8):1809–18. https://doi.org/10.1002/ijc.30610.

    Article  CAS  PubMed  Google Scholar 

  32. Licaj I, Sandin S, Skeie G, Adami H-O, Roswall N, Weiderpass E. Alcohol consumption over time and mortality in the Swedish Women’s Lifestyle and Health cohort. BMJ Open. 2016. https://doi.org/10.1136/bmjopen-2016-012862.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lukic M, Licaj I, Lund E, Skeie G, Weiderpass E, Braaten T. Coffee consumption and the risk of cancer in the Norwegian Women and Cancer (NOWAC) Study. Eur J Epidemiol. 2016;31(9):905–16. https://doi.org/10.1007/s10654-016-0142-x.

    Article  CAS  PubMed  Google Scholar 

  34. Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. https://doi.org/10.1136/bmj.b2393.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rubin DB. Multiple imputation after 18 + years. J Am Stat Assoc. 1996;91(434):473–89. https://doi.org/10.2307/2291635.

    Article  Google Scholar 

  36. Patel AV, Carter BD, Stevens VL, Gaudet MM, Campbell PT, Gapstur SM. The relationship between physical activity, obesity, and lung cancer risk by smoking status in a large prospective cohort of US adults. Cancer Causes Control. 2017;28(12):1357–68. https://doi.org/10.1007/s10552-017-0949-0.

    Article  PubMed  Google Scholar 

  37. Inoue M, Yamamoto S, Kurahashi N, Iwasaki M, Sasazuki S, Tsugane S. Daily total physical activity level and total cancer risk in men and women: results from a large-scale population-based cohort study in Japan. Am J Epidemiol. 2008;168(4):391–403. https://doi.org/10.1093/aje/kwn146.

    Article  PubMed  Google Scholar 

  38. Thune I, Lund E. The influence of physical activity on lung-cancer risk: a prospective study of 81,516 men and women. Int J Cancer. 1997;70:57–62. https://doi.org/10.1002/(SICI)1097-0215(19970106)70:1%3c57:AID-IJC9%3e3.0.CO;2-5.

    Article  CAS  PubMed  Google Scholar 

  39. Steindorf K, Friedenreich C, Linseisen J, Rohrmann S, Rundle A, Veglia F, et al. Physical activity and lung cancer risk in the European Prospective Investigation into Cancer and Nutrition Cohort. Int J Cancer. 2006;119(10):2389–97. https://doi.org/10.1002/ijc.22125.

    Article  CAS  PubMed  Google Scholar 

  40. Wang A, Qin F, Hedlin H, Desai M, Chlebowski R, Gomez S, et al. Physical activity and sedentary behavior in relation to lung cancer incidence and mortality in older women: the Women’s Health Initiative. Int J Cancer. 2016;139(10):2178–92. https://doi.org/10.1002/ijc.30281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moore SC, Lee I, Weiderpass E, et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med. 2016. https://doi.org/10.1001/jamainternmed.2016.1548.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hållmarker U, James S, Michaëlsson K, Ärnlöv J, Sandin F, Holmberg L. Cancer incidence in participants in a long-distance ski race (Vasaloppet, Sweden) compared to the background population. Eur J Cancer. 2015;51(4):558–68. https://doi.org/10.1016/j.ejca.2014.12.009.

    Article  PubMed  Google Scholar 

  43. Pukkala E, Poskiparta M, Apter D, Vihko V. Life-long physical activity and cancer risk among Finnish female teachers. Eur J Cancer Prev. 1993;2(5):369–76.

    Article  CAS  PubMed  Google Scholar 

  44. Steenland K, Nowlin S, Palu S. Cancer incidence in the National Health and Nutrition Survey I. Follow-up data: diabetes, cholesterol, pulse and physical activity. Cancer Epidemiol Biomark Prev. 1995;4(8):807–11.

    CAS  Google Scholar 

  45. Alfano CM, Klesges RC, Murray DM, Bowen DJ, McTiernan A, Vander Weg MW, et al. Physical activity in relation to all-site and lung cancer incidence and mortality in current and former smokers. Cancer Epidemiol Biomark Prev. 2004;13(12):2233–41.

    Google Scholar 

  46. Bak H, Christensen J, Thomsen BL, Tjønneland A, Overvad K, Loft S, et al. Physical activity and risk for lung cancer in a Danish cohort. Int J Cancer. 2005;116(3):439–44. https://doi.org/10.1002/ijc.21085.

    Article  CAS  PubMed  Google Scholar 

  47. Schnohr P, Grønbæk M, Petersen L, Hein HO, Sørensen TI. Physical activity in leisure-time and risk of cancer: 14-year follow-up of 28,000 Danish men and women. Scand J Public Health. 2005;33(4):244–9. https://doi.org/10.1080/14034940510005752.

    Article  PubMed  Google Scholar 

  48. Land SR, Liu Q, Wickerham DL, Costantino JP, Ganz PA. Cigarette smoking, physical activity, and alcohol consumption as predictors of cancer incidence among women at high risk of breast cancer in the NSABP P-1 trial. Cancer Epidemiol Biomark Prev. 2014;23(5):823–32. https://doi.org/10.1158/1055-9965.epi-13-1105-t.

    Article  Google Scholar 

  49. Rundle A, Richie J, Steindorf K, Peluso M, Overvad K, Raaschou-Nielsen O, et al. Physical activity and lung cancer among non-smokers: a pilot molecular epidemiological study within EPIC. Biomarkers. 2010;15(1):20–30. https://doi.org/10.3109/13547500903186452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Duncan K, Harris S, Murray Ardies C. Running exercise may reduce risk for lung and liver cancer by inducing activity of antioxidant and phase II enzymes. Cancer Lett. 1997;116(2):151–8. https://doi.org/10.1016/S0304-3835(97)00189-4.

    Article  CAS  PubMed  Google Scholar 

  51. Rundle AG, Orjuela M, Mooney L, Tang D, Kim M, Calcagnotto A, et al. Preliminary studies on the effect of moderate physical activity on blood levels of glutathione. Biomarkers. 2005;10(5):390–400. https://doi.org/10.1080/13547500500272663.

    Article  CAS  PubMed  Google Scholar 

  52. Schmid D, Ricci C, Behrens G, Leitzmann MF. Does smoking influence the physical activity and lung cancer relation? A systematic review and meta-analysis. Eur J Epidemiol. 2016;31(12):1173–90. https://doi.org/10.1007/s10654-016-0186-y.

    Article  CAS  PubMed  Google Scholar 

  53. Adami H-O, Hunter DJ, Trichopoulos D. Textbook of cancer epidemiology. 2nd ed. New York: Oxford University Press; 2008.

    Book  Google Scholar 

  54. Mao Y, Pan S, Wen SW, Johnson KC. Physical activity and the risk of lung cancer in Canada. Am J Epidemiol. 2003;158(6):564–75. https://doi.org/10.1093/aje/kwg186.

    Article  PubMed  Google Scholar 

  55. Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med. 2011;32(4):605–44. https://doi.org/10.1016/j.ccm.2011.09.001.

    Article  PubMed  Google Scholar 

  56. Borch KB, Braaten T, Lund E, Weiderpass E. Physical activity and mortality among Norwegian women—the Norwegian Women and Cancer Study. Clin Epidemiol. 2011;3(1):229–35. https://doi.org/10.1186/1479-5868-9-2.

    Article  PubMed  PubMed Central  Google Scholar 

  57. White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Stat Med. 2011. https://doi.org/10.1002/sim.4067.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Busund M, Bugge NS, Braaten T, Waaseth M, Rylander C, Lund E. Progestin-only and combined oral contraceptives and receptor-defined premenopausal breast cancer risk: the Norwegian Women and Cancer Study. Int J Cancer. 2018;142(11):2293–302. https://doi.org/10.1002/ijc.31266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kvaavik E, Lund I, Nygård M, Hansen BT. Lifestyle correlates of female snus use and smoking: a large population-based survey of women in Norway. Nicotine Tob Res. 2016;18(4):431–6. https://doi.org/10.1093/ntr/ntv126.

    Article  PubMed  Google Scholar 

  60. Lagerros YT, Mucci LA, Bellocco R, Olof N, Bälter O, Bälter KA. Validity and reliability of self-reported total energy expenditure using a novel instrument. Eur J Epidemiol. 2006;21(3):227–36.

    Article  PubMed  Google Scholar 

  61. Prince S, Adamo K, Hamel M, Hardt J, Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5(1):56.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project received financial support from the Norwegian Extra Foundation for Health and Rehabilitation through EXTRA funds, Grant No. 2012/2/0048-1220048001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin Benjaminsen Borch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borch, K.B., Weiderpass, E., Braaten, T. et al. Risk of lung cancer and physical activity by smoking status and body mass index, the Norwegian Women and Cancer Study. Eur J Epidemiol 34, 489–498 (2019). https://doi.org/10.1007/s10654-018-0446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-018-0446-0

Keywords

Navigation