Skip to main content

Advertisement

Log in

Modelling groundwater vulnerability in a vulnerable deltaic coastal region of Sundarban Biosphere Reserve, India

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Groundwater is the most reliable source of freshwater for human well-being. Significant toxic contamination in groundwater, particularly in the aquifers of the Ganges delta, has been a substantial source of arsenic (As). The Sundarban Biosphere Reserve (SBR), located in the southwestern part of the world’s largest Ganges delta, suffers from As contamination in groundwater. Therefore, assessment of groundwater vulnerability is essential to ensure the safety of groundwater quality in SBR. Three data-driven algorithms, i.e. “logistic regression (LR)”, “random forest (RF)”, and “boosted regression tree (BRT)”, were used to assess groundwater vulnerability. Groundwater quality and hydrogeochemical characteristics were evaluated by Piper, United States Salinity Laboratory (USSL), and Wilcox's diagram. The result of this study indicates that among the applied models, BRT (AUC = 0.899) is the best-fit model, followed by RF (AUC = 0.882) and LR (AUC = 0.801) to assess groundwater vulnerability. In addition, the result also indicates that the general quality of the groundwater in this area is not very good for drinking purposes. The applied methods of this study can be used to evaluate the groundwater vulnerability of the other aquifer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data generated in this study are presented in the manuscript.

References

  • Adiat, K. A. N., Akeredolu, B. E., Akinlalu, A. A., & Olayanju, G. M. (2020). Application of logistic regression analysis in prediction of groundwater vulnerability in gold mining environment: A case of Ilesa gold mining area, southwestern, Nigeria. Environmental Monitoring and Assessment, 192(9), 577. https://doi.org/10.1007/s10661-020-08532-7

    Article  CAS  Google Scholar 

  • Adimalla, N., Manne, R., Zhang, Y., Xu, P., & Qian, H. (2022). Evaluation of groundwater quality and its suitability for drinking purposes in semi-arid region of Southern India: An application of GIS. Geocarto International. https://doi.org/10.1080/10106049.2022.2040603

    Article  Google Scholar 

  • Adimalla, N., Qian, H., & Nandan, M. J. (2020). Groundwater chemistry integrating the pollution index of groundwater and evaluation of potential human health risk: A case study from hard rock terrain of south India. Ecotoxicology and Environmental Safety, 206, 111217.

    Article  CAS  Google Scholar 

  • Antonakos, A. K., & Lambrakis, N. J. (2007). Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece. Journal of Hydrology, 333(2), 288–304. https://doi.org/10.1016/j.jhydrol.2006.08.014

    Article  Google Scholar 

  • Awais, M., Aslam, B., Maqsoom, A., Khalil, U., Ullah, F., Azam, S., & Imran, M. (2021). Assessing nitrate contamination risks in groundwater: A machine learning approach. Applied Sciences, 11(21), 10034. https://doi.org/10.3390/app112110034

    Article  CAS  Google Scholar 

  • Bera, A., Mukhopadhyay, B. P., & Das, S. (2022). Groundwater vulnerability and contamination risk mapping of semi-arid Totko river basin, India using GIS-based DRASTIC model and AHP techniques. Chemosphere, 307, 135831.

    Article  CAS  Google Scholar 

  • Bhadra, T., Hazra, S., Ray, S. S., & Barman, B. C. (2020). Assessing the groundwater quality of the coastal aquifers of a vulnerable delta: A case study of the Sundarban Biosphere Reserve India. Groundwater for Sustainable Development, 11, 100438.

    Article  Google Scholar 

  • Biswas, T., Pal, S. C., Chowdhuri, I., Ruidas, D., Saha, A., Islam, A. R. M. D. T., & Shit, M. (2023a). Effects of elevated arsenic and nitrate concentrations on groundwater resources in deltaic region of Sundarban Ramsar site Indo-Bangladesh Region. Marine Pollution Bulletin, 188, 114618. https://doi.org/10.1016/j.marpolbul.2023.114618

    Article  CAS  Google Scholar 

  • Biswas, T., Pal, S. C., Saha, A., Ruidas, D., Islam, A. RMd. T., & Shit, M. (2023b). Hydrochemical assessment of groundwater pollutant and corresponding health risk in the Ganges delta Indo-Bangladesh Region. Journal of Cleaner Production, 382, 135229. https://doi.org/10.1016/j.jclepro.2022.135229

    Article  CAS  Google Scholar 

  • Bordbar, M., Neshat, A., Javadi, S., Pradhan, B., & Aghamohammadi, H. (2020). Meta-heuristic algorithms in optimizing GALDIT framework: A comparative study for coastal aquifer vulnerability assessment. Journal of Hydrology, 585, 124768.

    Article  CAS  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Chakraborti, D., Das, B., Rahman, M. M., Nayak, B., Pal, A., Sengupta, M. K., et al. (2017). Arsenic in groundwater of the Kolkata municipal corporation (KMC), India: Critical review and modes of mitigation. Chemosphere, 180, 437–447.

    Article  CAS  Google Scholar 

  • Chakraborty, B., Roy, S., Bera, A., Adhikary, P. P., Bera, B., Sengupta, D., et al. (2022). Groundwater vulnerability assessment using GIS-based DRASTIC model in the upper catchment of Dwarakeshwar river basin, West Bengal, India. Environmental Earth Sciences, 81(1), 1–15.

    Article  Google Scholar 

  • Civita, M. (1990). Legenda unificata per le Carte della vulnerabilitadei corpi idrici sotterranei/Unified legend for the aquifer pollution vulnerability Maps. Studi Sulla Vulnerabilita Degli Acquiferi, 1, 13.

    Google Scholar 

  • Constant, T., Charrière, S., Lioeddine, A., & Emsellem, Y. (2016). Use of modeling to protect, plan, and manage water resources in catchment areas. Environmental Science and Pollution Research, 23(16), 15841–15851.

    Article  CAS  Google Scholar 

  • Dai, F. C., & Lee, C. F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island Hong Kong. Geomorphology, 42(3–4), 213–228.

    Article  Google Scholar 

  • Dou, J., Yunus, A. P., Bui, D. T., Merghadi, A., Sahana, M., Zhu, Z., et al. (2019). Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of the Total Environment, 662, 332–346.

    Article  CAS  Google Scholar 

  • Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802–813.

    Article  CAS  Google Scholar 

  • Elzain, H. E., Chung, S. Y., Senapathi, V., Sekar, S., Lee, S. Y., Roy, P. D., et al. (2022). Comparative study of machine learning models for evaluating groundwater vulnerability to nitrate contamination. Ecotoxicology and Environmental Safety, 229, 113061.

    Article  CAS  Google Scholar 

  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232.

    Article  Google Scholar 

  • Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367–378.

    Article  Google Scholar 

  • Gharakezloo, Y. N., Nikoo, M. R., Karimi-Jashni, A., & Mooselu, M. G. (2022). A hybrid statistical decision-making optimization approach for groundwater vulnerability considering uncertainty. Environmental Science and Pollution Research, 29(6), 8597–8612. https://doi.org/10.1007/s11356-021-16242-x

    Article  Google Scholar 

  • Gharekhani, M., Nadiri, A. A., Khatibi, R., Sadeghfam, S., & Moghaddam, A. A. (2022). A study of uncertainties in groundwater vulnerability modelling using Bayesian model averaging (BMA). Journal of Environmental Management, 303, 114168.

    Article  CAS  Google Scholar 

  • Gigović, L., Pourghasemi, H. R., Drobnjak, S., & Bai, S. (2019). Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia’s Tara National Park. Forests, 10(5), 408.

    Article  Google Scholar 

  • Hasan, M., Zannat, M., Hossain, A. F. M., Shah-Newaz, S. M., & Hossain, M. M. (2020). Groundwater vulnerability mapping to salinity intrusion using GALDIT method: A case study of the Southwestern Coastal Region of Bangladesh. Water, Flood management and water security under a changing climate (pp. 141–152). Springer.

    Chapter  Google Scholar 

  • Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844.

    Article  Google Scholar 

  • Islam, A. R. T., Pal, S. C., Chakrabortty, R., Idris, A. M., Salam, R., Islam, M. S., et al. (2022). A coupled novel framework for assessing vulnerability of water resources using hydrochemical analysis and data-driven models. Journal of Cleaner Production, 336, 130407.

    Article  CAS  Google Scholar 

  • Islam, A. R. M. D. T., Pal, S. C., Chowdhuri, I., Salam, R., Islam, M. D. S., Rahman, M. D. M., et al. (2021). Application of novel framework approach for prediction of nitrate concentration susceptibility in coastal multi-aquifers Bangladesh. Science of the Total Environment, 801, 149811. https://doi.org/10.1016/j.scitotenv.2021.149811

    Article  CAS  Google Scholar 

  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). Springer.

    Book  Google Scholar 

  • Jang, C.-S., & Chen, S.-K. (2015). Integrating indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N for establishing groundwater protection zones. Journal of Hydrology, 523, 441–451. https://doi.org/10.1016/j.jhydrol.2015.01.077

    Article  CAS  Google Scholar 

  • Kenda, K., Peternelj, J., Mellios, N., Kofinas, D., Čerin, M., & Rožanec, J. (2020). Usage of statistical modeling techniques in surface and groundwater level prediction. Journal of Water Supply: Research and Technology-Aqua, 69(3), 248–265. https://doi.org/10.2166/aqua.2020.143

    Article  Google Scholar 

  • Khakhar, M., Ruparelia, J. P., & Vyas, A. (2017). Assessing groundwater vulnerability using GIS-based DRASTIC model for Ahmedabad district, India. Environmental Earth Sciences, 76(12), 440. https://doi.org/10.1007/s12665-017-6761-z

    Article  CAS  Google Scholar 

  • Khan, A., Khan, H. H., Umar, R., & Khan, M. H. (2014). An integrated approach for aquifer vulnerability mapping using GIS and rough sets: Study from an alluvial aquifer in north India. Hydrogeology Journal, 22(7), 1561.

    Article  CAS  Google Scholar 

  • Koley, S. (2022). Future perspectives and mitigation strategies towards groundwater arsenic contamination in West Bengal, India. Environmental Quality Management, 31(4), 75–97. https://doi.org/10.1002/tqem.21784

    Article  Google Scholar 

  • Korkmaz, M., Güney, S., & YİĞİTER, Ş. (2012). The importance of logistic regression implementations in the Turkish livestock sector and logistic regression implementations/fields. Harran Tarım Ve Gıda Bilimleri Dergisi, 16(2), 25–36.

    Google Scholar 

  • Lahjouj, A., El Hmaidi, A., Bouhafa, K., & Boufala, M. (2020). Mapping specific groundwater vulnerability to nitrate using random forest: Case of Sais basin, Morocco. Modeling Earth Systems and Environment, 6(3), 1451–1466.

    Article  Google Scholar 

  • Lakshminarayanan, B., Ramasamy, S., Anuthaman, S. N., & Karuppanan, S. (2022). New DRASTIC framework for groundwater vulnerability assessment: Bivariate and multi-criteria decision-making approach coupled with metaheuristic algorithm. Environmental Science and Pollution Research, 29(3), 4474–4496.

    Article  Google Scholar 

  • Lee, S. (2005). Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. International Journal of Remote Sensing, 26(7), 1477–1491.

    Article  Google Scholar 

  • Mahadevia Ghimire, K., & Vikas, M. (2012). Climate change–impact on the Sundarbans, a case study. International Scientific Journal: Environmental Science, 2(1), 7–15.

    Google Scholar 

  • Mair, A., & El-Kadi, A. I. (2013). Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA. Journal of Contaminant Hydrology, 153, 1–23. https://doi.org/10.1016/j.jconhyd.2013.07.004

    Article  CAS  Google Scholar 

  • Masetti, M., Poli, S., & Sterlacchini, S. (2007). The use of the weights-of-evidence modeling technique to estimate the vulnerability of groundwater to nitrate contamination. Natural Resources Research, 16(2), 109–119. https://doi.org/10.1007/s11053-007-9045-6

    Article  CAS  Google Scholar 

  • Mavriou, Z., Kazakis, N., & Pliakas, F.-K. (2019). Assessment of groundwater vulnerability in the north aquifer area of Rhodes Island using the GALDIT method and GIS. Environments, 6(5), 56. https://doi.org/10.3390/environments6050056

    Article  Google Scholar 

  • Motevalli, A., Naghibi, S. A., Hashemi, H., Berndtsson, R., Pradhan, B., & Gholami, V. (2019). Inverse method using boosted regression tree and k-nearest neighbor to quantify effects of point and non-point source nitrate pollution in groundwater. Journal of Cleaner Production, 228, 1248–1263. https://doi.org/10.1016/j.jclepro.2019.04.293

    Article  CAS  Google Scholar 

  • Mukherjee, A. (2006). Deeper groundwater flow and chemistry in the arsenic affected western Bengal basin, West Bengal, India.

  • Mukherjee, A. (2009). Some recent advances in understanding the groundwater resources of gangetic West Bengal. Bhu-Jal News Quart J Cent Ground Water Board, 24(1), 18–27.

    Google Scholar 

  • Naghibi, S. A., Pourghasemi, H. R., & Dixon, B. (2016). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment, 188(1), 1–27.

    Article  Google Scholar 

  • Norouzi, H., & Moghaddam, A. A. (2020). Groundwater quality assessment using random forest method based on groundwater quality indices (case study: Miandoab plain aquifer, NW of Iran). Arabian Journal of Geosciences, 13(18), 912. https://doi.org/10.1007/s12517-020-05904-8

    Article  CAS  Google Scholar 

  • Ouedraogo, I., Defourny, P., & Vanclooster, M. (2019). Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale. Hydrogeology Journal, 27(3), 1081–1098.

    Article  CAS  Google Scholar 

  • Pal, S. C., Chakrabortty, R., Arabameri, A., Santosh, M., Saha, A., Chowdhuri, I., et al. (2021). Chemical weathering and gully erosion causing land degradation in a complex river basin of Eastern India: An integrated field, analytical and artificial intelligence approach. Natural Hazards, 110(2), 847–879.

    Article  Google Scholar 

  • Pal, S. C., Islam, A. R. M. T., Chakrabortty, R., Islam, M. S., Saha, A., & Shit, M. (2022a). Application of data-mining technique and hydrochemical data for evaluating vulnerability of groundwater in Indo-Gangetic Plain. Journal of Environmental Management, 318, 115582.

    Google Scholar 

  • Pal, S., Ruidas, D., Saha, A., Islam, A. RMd. T., & Chowdhuri, I. (2022b). Application of novel data-mining technique-based nitrate concentration susceptibility prediction approach for coastal aquifers in India. Journal of Cleaner Production, 346, 131205. https://doi.org/10.1016/j.jclepro.2022.131205

    Article  CAS  Google Scholar 

  • Paudel, U., Oguchi, T., & Hayakawa, Y. (2016). Multi-resolution landslide susceptibility analysis using a DEM and random forest. International Journal of Geosciences, 07(05), 726. https://doi.org/10.4236/ijg.2016.75056

    Article  Google Scholar 

  • Pham, Q. B., Tran, D. A., Ha, N. T., Islam, A. R. M. T., & Salam, R. (2022). Random forest and nature-inspired algorithms for mapping groundwater nitrate concentration in a coastal multi-layer aquifer system. Journal of Cleaner Production, 343, 130900.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25(6), 914–928.

    Article  Google Scholar 

  • Rätsch, G., Onoda, T., & Müller, K.-R. (2001). Soft Margins for AdaBoost. Machine Learning, 42(3), 287–320.

    Article  Google Scholar 

  • Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104.

    Article  Google Scholar 

  • Rodriguez-Galiano, V., Mendes, M. P., Garcia-Soldado, M. J., Chica-Olmo, M., & Ribeiro, L. (2014). Predictive modeling of groundwater nitrate pollution using random forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain). Science of the Total Environment, 476–477, 189–206. https://doi.org/10.1016/j.scitotenv.2014.01.001

    Article  CAS  Google Scholar 

  • Ruidas, D., Pal, S., Saha, A., Chowdhuri, I., & Shit, M. (2022b). Hydrogeochemical characterization based water resources vulnerability assessment in India’s first Ramsar site of Chilka lake. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2022.114107

    Article  Google Scholar 

  • Ruidas, D., Pal, S. C., Towfiqul Islam, A. RMd., & Saha, A. (2022a). Hydrogeochemical Evaluation of groundwater aquifers and associated health hazard risk mapping using ensemble data driven model in a water scares plateau region of eastern India. Exposure and Health. https://doi.org/10.1007/s12403-022-00480-6

    Article  Google Scholar 

  • Saha, A., Pal, S. C., Arabameri, A., Blaschke, T., Panahi, S., Chowdhuri, I., et al. (2021a). Flood susceptibility assessment using novel ensemble of hyperpipes and support vector regression algorithms. Water, 13(2), 241.

    Article  Google Scholar 

  • Saha, A., Pal, S. C., Chowdhuri, I., Islam, A. R. M. D. T., Chakrabortty, R., & Roy, P. (2022b). Application of neural network model-based framework approach to identify gully erosion potential hotspot zones in sub-tropical environment. Geocarto International. https://doi.org/10.1080/10106049.2022.2091042

    Article  Google Scholar 

  • Saha, A., Pal, S. C., Chowdhuri, I., Islam, A. R. M. T., Roy, P., & Chakrabortty, R. (2022a). Land degradation risk dynamics assessment in red and lateritic zones of eastern plateau, India: A combine approach of K-fold CV, data mining and field validation. Ecological Informatics, 69, 101653.

    Article  Google Scholar 

  • Saha, A., Pal, S. C., Chowdhuri, I., Roy, P., & Chakrabortty, R. (2022c). Effect of hydrogeochemical behavior on groundwater resources in Holocene aquifers of moribund Ganges Delta, India: Infusing data-driven algorithms. Environmental Pollution, 314, 120203. https://doi.org/10.1016/j.envpol.2022.120203

    Article  CAS  Google Scholar 

  • Saha, A., Pal, S. C., Santosh, M., Janizadeh, S., Chowdhuri, I., Norouzi, A., et al. (2021b). Modelling multi-hazard threats to cultural heritage sites and environmental sustainability: The present and future scenarios. Journal of Cleaner Production, 320, 128713. https://doi.org/10.1016/j.jclepro.2021.128713

    Article  Google Scholar 

  • Sahana, M., Rehman, S., Paul, A. K., & Sajjad, H. (2021). Assessing socio-economic vulnerability to climate change-induced disasters: Evidence from Sundarban Biosphere Reserve, India. Geology, Ecology, and Landscapes, 5(1), 40–52. https://doi.org/10.1080/24749508.2019.1700670

    Article  Google Scholar 

  • Shaji, E., Santosh, M., Sarath, K. V., Prakash, P., Deepchand, V., & Divya, B. V. (2021). Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geoscience Frontiers, 12(3), 101079.

    Article  CAS  Google Scholar 

  • Sinha, R. (2014). Studies on the impact of global warming on the groundwater resources and to develop strategies for fresh and sustainable drinking water supply of Sundarban area including Sagar Islands. Centre for Groundwater Studies.

    Google Scholar 

  • Smits, J. E., Krohn, R. M., Akhtar, E., Hore, S. K., Yunus, Md., Vandenberg, A., & Raqib, R. (2019). Food as medicine: Selenium enriched lentils offer relief against chronic arsenic poisoning in Bangladesh. Environmental Research, 176, 108561. https://doi.org/10.1016/j.envres.2019.108561

    Article  CAS  Google Scholar 

  • Sorichetta, A., Ballabio, C., Masetti, M., Robinson, G. R., Jr., & Sterlacchini, S. (2013). A comparison of data-driven groundwater vulnerability assessment methods. Groundwater, 51(6), 866–879. https://doi.org/10.1111/gwat.12012

    Article  CAS  Google Scholar 

  • Srinivas, Y., Oliver, D. H., Raj, A. S., & Chandrasekar, N. (2013). Evaluation of groundwater quality in and around Nagercoil town, Tamilnadu, India: An integrated geochemical and GIS approach. Applied Water Science, 3(3), 631–651.

    Article  CAS  Google Scholar 

  • Taalab, K., Cheng, T., & Zhang, Y. (2018). Mapping landslide susceptibility and types using random forest. Big Earth Data, 2(2), 159–178. https://doi.org/10.1080/20964471.2018.1472392

    Article  Google Scholar 

  • Taghavi, N., Niven, R. K., Paull, D. J., & Kramer, M. (2022). Groundwater vulnerability assessment: A review including new statistical and hybrid methods. Science of the Total Environment, 822, 153486.

    Article  CAS  Google Scholar 

  • Tasnim, Z., & Tahsin, S. (2016). Application of the method of GALDIT for groundwater vulnerability assessment: A case of South Florida. Asian Journal of Applied Science and Engineering, 5(1), 27–40.

    Article  Google Scholar 

  • Twarakavi, N. K. C., & Kaluarachchi, J. J. (2005). Aquifer vulnerability assessment to heavy metals using ordinal logistic regression. Groundwater, 43(2), 200–214. https://doi.org/10.1111/j.1745-6584.2005.0001.x

    Article  CAS  Google Scholar 

  • Uppal, J. S., Zheng, Q., & Le, X. C. (2019). Arsenic in drinking water—recent examples and updates from Southeast Asia. Current Opinion in Environmental Science & Health, 7, 126–135.

    Article  Google Scholar 

  • Verma, D. K., Bhunia, G. S., Shit, P. K., & Tiwari, A. K. (2018). Assessment of groundwater quality of the Central Gangetic Plain Area of India using Geospatial and WQI Techniques. Journal of the Geological Society of India, 92(6), 743–752.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to The University of Burdwan for providing essential infrastructure to complete this work.

Funding

No fund is available for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the study conceptualization, design, and methodology stage. All authors read and approved the final manuscript for submission.

Corresponding author

Correspondence to Subodh Chandra Pal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, A., Pal, S.C. Modelling groundwater vulnerability in a vulnerable deltaic coastal region of Sundarban Biosphere Reserve, India. Environ Geochem Health 46, 8 (2024). https://doi.org/10.1007/s10653-023-01799-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-023-01799-y

Keywords

Navigation