Skip to main content

Advertisement

Log in

Uptake of Cu, Hg, and As in wild vegetation, associated to surface water in the Copiapó valley, before the 2015 alluvium

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In an annual monitoring in the Copiapó valley, the concentration of Cu, Hg, and As in sediments was related to environmental transfer processes, these elements also being present in surface water. The goal was to evaluate the uptake of the mentioned elements in wild plants of the Copiapó Valley, to determine if these species could be indicator plants to prevent environmental risks in local agriculture. From the same monitoring, the uptake of the elements was determined in wild plants growing near the irrigation channels; canopy of Tessaria absinthioides, Equisetum giganteum, Arundo donax, Melilotus indicus, Cortaderia rudiscula, and Sarcocornia neei was analyzed for the same elements. These plants were able to uptake Cu, Hg and As in concentration between 19 and 4674.5 times the environmental limits allowed for edible plants. This result shows that crop plants can also capture contaminants elements due to the frequency of irrigation. These plants can be used as indicators for the diagnosis of capture of the pollutants elements by plants and to prevent environmental hazards to human health in agricultural products from the Copiapó valley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Rojos et al. (2019)

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar, G., Valdés, A., Cabré, A., & Galdames, F. (2021). Flash floods controlling Cu, Pb, As and Hg variations in fluvial sediments of a river impacted by metal mining in the Atacama Desert. Journal of South American Earth Sciences., 109, 103290. https://doi.org/10.1016/j.jsames.2021.103290

    Article  CAS  Google Scholar 

  • Alagić, S. Č, Tošić, S. B., Dimitrijević, M. D., Antonijević, M. M., & Nujkić, M. M. (2015). Assessment of the quality of polluted areas based on the content of heavy metals in different organs of the grapevine (Vitis vinifera) cv Tamjanika. Environmental Science and Pollution Research, 22, 7155–7175. https://doi.org/10.1007/s11356-014-3933-1

    Article  CAS  Google Scholar 

  • Álvarez, P., Cortés, J., Ferrada, D., Leyton, C., & Sans, J. (1995). Determinación experimental del límite absoluto de tolerancia para cuatro metales pesados (Cd, Pb, Mo y Cu) en raíces adventicias de bulbos de cebolla. Allium Cepa L Agricultura Técnica, 55(2), 86–94.

    Google Scholar 

  • Antonijevi, M. M., Dimitrijevi, M. D., Mili, S. M., & Nujki, M. M. (2012). Metal concentrations in the soils and native plants surrounding the old flotation tailings pond of the Copper Mining and Smelting Complex Bor (Serbia). Journal of Environmental Monitoring, 14, 866–877. https://doi.org/10.1039/C2EM10803H

    Article  Google Scholar 

  • APHA. (2012). Standard Methods for the Examination of Water and Waste Water (22 ed.). American Public Health Association, American Water Works Association, Water Environment Federation, p. 724. ISBN 0875530133, 9780875530130.

  • Bonanno, G. (2012). Arundo donax as a potential biomonitor of trace element contamination in water and sediment. Ecotoxicology and Environmental Safety, 80, 20–27. https://doi.org/10.1016/j.ecoenv.2012.02.005

    Article  CAS  Google Scholar 

  • Bonanno, G. (2013). Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicology and Environmental Safety, 97, 124–130. https://doi.org/10.1016/j.ecoenv.2013.07.017

    Article  CAS  Google Scholar 

  • Bonanno, G., Borg, J. A., & Di Martino, V. (2017). Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: A comparative assessment. Science of the Total Environment., 576, 796–806. https://doi.org/10.1016/j.scitotenv.2016.10.171

    Article  CAS  Google Scholar 

  • Bonanno, G., Vymazal, J., & Cirelli, G. L. (2018). Translocation, accumulation and bioindication of trace elements in wetland plants. Science of the Total Environment, 631, 252–261. https://doi.org/10.1016/j.scitotenv.2018.03.039

    Article  CAS  Google Scholar 

  • Butterworth, F. M. (1995). Introduction to biomonitors and biomarkers as indicators of environmental change. In F. M. Butterworth (Ed.), Biomonitors and biomarkers as indicators of environmental change: A handbook (pp. 69–79). Plenum Press.

    Google Scholar 

  • Castro, G., & Valdés, J. (2012). Concentración de metales pesados (Cu, Ni, Zn, Cd, Pb) en la biota y sedimentos de una playa artificial, en la bahía San Jorge 23ºS, norte de Chile. Latin American Journal of Aquatic Research, 40(2), 267–281. https://doi.org/10.3856/vol40-issue2-fulltext-3

    Article  Google Scholar 

  • Chine, L. (1996). Cobre. Aprueba reglamento sanitario de los alimentos. Título IV de los contaminantes y residuos, Párrafo I de los metales pesados, Artículo 160. Dto.Salud Art Único n° 41. D.O. 13.01.2000. Biblioteca del Congreso Nacional (Chile). In: https://www.bcn.cl/leychile/navegar?idNorma=71271

  • Cristaldi, A., Conti, G. O., Cosentino, S. L., Mauromicale, G., Copat, C., Grasso, A., Zuccarello, P., Fiore, M., Restuccia, C., & Ferrante, M. (2020). Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals. Environmental Research, 185, 109427. https://doi.org/10.1016/j.envres.2020.109427

    Article  CAS  Google Scholar 

  • Duarte, B., Santos, S., & Caçador, I. (2013). Halophyte anti-oxidant feedback seasonality in two salt marshes with different degrees of metal contamination: Search for an efficient biomarker. Functional Plant Biology, 40(9), 922–930. https://doi.org/10.1071/FP12315

    Article  CAS  Google Scholar 

  • European Commission. (2015). Commission Regulation (EC) No 1881/2006, setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Comm. L364/5. In (2020) http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32006R1881.

  • FAO. (1995a). Comisión del Codex Alimentarius. Organización de las Naciones Unidas para la Agricultura y la Alimentación y Organización Mundial de la Salud. ALINORM 95/29, Programa conjunto FAO/OMS sobre normas alimentarias. Comision of Codex Alimentarius. Roma, p. 124.

  • FAO. (1995b). Codex Alimentarius. Organización de las Naciones Unidas para la Agricultura y la Alimentación y Organización Mundial de la Salud, Norma general para los contaminantes y las toxinas presentes en los alimentos y piensos. CODEX STAN 193–1995b. p. 48. In https://www.fao.org/fileadmin/user_upload/livestockgov/documents/CXS_193s.pdf

  • FAO. (2014). Comisión del Codex Alimentarius, Programa conjunto FAO/OMS sobre normas alimentarias comité del Codex sobre nutrición y alimentos para regímenes especiales. Trigésima sexta reunión Bali (Indonesia). In (2020) http://www.fao.org/tempref/codex/Meetings/CCNFSDU/ccnfsdu36/nf36_02_add1s.pdf. p. 17.

  • García, G. L., & Díaz, C. J. (2017). Contaminación por metales pesados (Pb+2, Hg+2 y Cd+2) en el agua para riego de hortalizas proveniente del río Bogotá. In Contaminación por mercurio en Bogotá y su conurbano (pp. 37–62). Universidad Central. ISBN: 978-958-26-0370-0.

  • García-Hernández, J., Espinosa-Romero, M. J., Cisneros-Mata, M. A., Leyva-García, G., Aguilera-Márquez, D., & Torre-Cosío, J. (2015). Concentración de mercurio y plaguicidas organoclorados (poc) en tejido comestible de jaiba café Callinectes bellicosus de las costas de Sonora y Sinaloa, México. Ciencia Pesquera (número Especial), 23, 65–79.

    Google Scholar 

  • Greger, M., & Kautsky, L. (1993). Use of macrophytes for mapping bioavailable heavy metals in shallow coastal areas, Stockholm. Sweden. Applied Geochemistry, 8(2), 37–43. https://doi.org/10.1016/S0883-2927(09)80007-3

    Article  Google Scholar 

  • Hsieh, C.-Y., Tsai, M.-H., Ryan, D. K., & Pancorbo, O. C. (2004). Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Microtox® chronic toxicity test. Science of the Total Environment, 320(1), 37–50. https://doi.org/10.1016/S0048-9697(03)00451-0

    Article  CAS  Google Scholar 

  • Izquierdo, T., Bonnail, E., Abad, M., Dias, M. I., Prudêncio, M. I., Marques, R., Rodríguez-Vidal, J., & Ruiz, F. (2020). Pollution and potential risk assessment of flood sediments in the urban area of the mining Copiapó basin (Atacama Desert). Journal of South American Earth Sciences, 103, 102714. https://doi.org/10.1016/j.jsames.2020.102714

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. CRC Press, p. 106. In (2020) https://hwbdocuments.env.nm.gov/Los%20Alamos%20National%20Labs/TA%2000/7257.pdf

  • Kabata-Pendias, A. (2010). Trace elements in soils and plants (4 ed.). CRC Press, p. 520. In (2020) https://books.google.cl/books?hl=en&lr=&id=YQfMBQAAQBAJ&oi=fnd&pg=PP1&ots=9nu1fJzC3f&sig=iNnhW2X1r10_CSQx8U9WR70T2mU&redir_esc=y#v=onepage&q&f=false

  • Ladislas, S., El-Mufleh, A., Gérente, C., Chazarenc, F., Andrès, Y., & Béchet, B. (2012). Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water, Air, and Soil Pollution, 223, 877–888. https://doi.org/10.1007/s11270-011-0909-3

    Article  CAS  Google Scholar 

  • Leita, L., Mondini, C., de Nobili, M., Simoni, A., & Sequi, P. (1998). Heavy metal content in xylem sap (vitis vinifera) from mining and smelting áreas. Environmental Monitoring and Assessment, 50, 189–200. https://doi.org/10.1023/A:1005854213903

    Article  CAS  Google Scholar 

  • Liu, Y.-N., Xiao, X.-Y., & Guo, Z.-H. (2019). Identification of indicators of giant reed (Arundo donax L.) ecotypes for phytoremediation of metal-contaminated soil in a non-ferrous mining and smelting area in southern China. Ecological Indicators, 101, 249–260. https://doi.org/10.1016/j.ecolind.2019.01.029

    Article  CAS  Google Scholar 

  • Llerena, J. P. P., Coasaca, R. L., Rodriguez, H. O. L., Llerena, S. Á. P., Valencia, Y. D., & Mazzafera, P. (2021). Metallothionein production is a common tolerance mechanism in four species growing in polluted Cu mining areas in Peru. Ecotoxicology and Environmental Safety, 212, 112009. https://doi.org/10.1016/j.ecoenv.2021.112009

    Article  CAS  Google Scholar 

  • Llorens, N., Arola, L., Blade, C., & Mas, A. (2000). Effects of copper exposure upon nitrogen metabolism in tissue cultured Vitis vinífera. Plant Science, 160, 159–163. https://doi.org/10.1016/S0168-9452(00)00379-4

    Article  CAS  Google Scholar 

  • Londoño-Franco, L. F., Londoño-Muñoz, P. T., & Muñoz-García, F. G. (2016). Los riesgos de los metales pesados en la salud humana y animal. Biotecnología En El Sector Agropecuario y Agroindustrial, 14(2), 145–153. https://doi.org/10.18684/BSAA(14)145-153

    Article  Google Scholar 

  • Malizia, D., Giuliano, A., Ortaggi, G., & Masotti, A. (2012). Common plants as alternative analytical tools to monitor heavy metals in soil. Chemistry Central Journal, 6, S6. https://doi.org/10.1186/1752-153X-6-S2-S6

    Article  CAS  Google Scholar 

  • Markert, B., Wappelhorst, O., Weckert, V., Herpin, U., Siewers, U., Friese, K., & Breulmann, G. (1999). The use of bioindicators for monitoring the heavy-metal status of the environment. Journal of Radioanalytical and Nuclear Chemistry, 240(2), 425–429. https://doi.org/10.1007/BF02349387

    Article  CAS  Google Scholar 

  • Martín-Domingo, M. C., Pla, A., Hernández, A. F., Olmedo, P., Navas-Acien, A., Lozano-Paniagua, D., & Gil, F. (2017). Determination of metalloid, metallic and mineral elements in herbal teas. Risk assessment for the consumers. Journal of Food Composition and Analysis, 60, 81–89. https://doi.org/10.1016/j.jfca.2017.03.009

    Article  CAS  Google Scholar 

  • Matanzas, N., Sierra, M. J., Afif, E., Díaz, T. E., Gallego, J. R., & Millán, R. (2017). Geochemical study of a mining-metallurgy site polluted with As and Hg and the transfer of these contaminants to Equisetum sp. Journal of Geochemical Exploration. https://doi.org/10.1016/j.gexplo.2017.08.008

    Article  Google Scholar 

  • Mercosur. (2011). MERCOSUR/GMC/RES Nº 12/11, Reglamento técnico MERCOSUR sobre límites máximos de contaminantes inorgánicos en alimentos (Grupo Mercado Común). P. 18. Res 012-2011_es_rtm_limites_contaminantes. In http://www.puntofocal.gov.ar/doc/r_gmc_12-11.pdf

  • Mherzi, N., Lamchouri, F., Khabbach, A., Boulfia, M., Zalaghi, A., & Toufik, H. (2020). Ecological types and bioindicator macrophyte species of pollution of riparian vegetation of Oued Lârbaa in Taza City of Morocco. Environmental Monitoring and Assessment, 192, 265. https://doi.org/10.1007/s10661-020-8205-6

    Article  CAS  Google Scholar 

  • Miranda, D., Carranza, C., Rojas, C., Jerez, C., Fischer, G., & Zurita, J. (2011). Acumulación de metales pesados en suelo y plantas de cuatro cultivos hortícolas regados con agua del río Bogotá. Revista Colombiana De Ciencias Hortícolas, 2(2), 180–191. https://doi.org/10.17584/rcch.2008v2i2.1186

    Article  Google Scholar 

  • MOP (Ministerio de Obras Públicas). (1996). Análisis del efecto del material particulado en aguas de riego I–IX Region. Antecedentes preliminares. Informe final. Departamento de Conservacion y Proteccion de Recursos Hídricos. In: http://bibliotecadigital.ciren.cl/bitstream/handle/123456789/32817/DGA_1996_analisis_efecto_material_particulado_aguas_riego_I_IX_Region_antecedentes.pdf?. P. 102.

  • OMS .(2016). Planificación de la seguridad del saneamiento: Manual para el uso y la disposición seguros de aguas residuales, aguas grises y excretas. P. 156. In: (2020) https://apps.who.int/iris/bitstream/handle/10665/250331/9789243549248-spa.pdf;jsessionid=257F311C03D410167B693E3D1F136D2B?sequence=1.

  • Perdomo, A. M. (2020). Efecto de la presencia de metales pesados (Zn y Cu) en el desarrollo y contenido de lípidos, azúcares y clorofilas en cultivo de hortalizas (p. 71). Universidad Politécnica de Catalonia, Barcelona, Escuela Superior de Agricultura.

    Google Scholar 

  • Prieto, J., Gonzales, C., Roman, A., & Prieto, F. (2009). Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Tropical and Subtropical Agroecosystems, 10(1), 29–44.

    Google Scholar 

  • Queirolo, F., Stegen, S., Contreras-Ortega, C., Ostapczuk, P., Queirolo, A., & Paredes, B. (2009). Thallium levels and bioaccumulation in environmental samples of northern chile: Human health risks. Journal of the Chilean Chemical Society, 54(4), 464–469. https://doi.org/10.4067/S0717-97072009000400031

    Article  CAS  Google Scholar 

  • Reyes, Y. C., Vergara, I., Torres, O. E., Díaz, M., & González, E. E. (2016). Heavy metals contamination: implications for health and food safety. Revista Ingeniería, Investigación y Desarrollo, 16(2), 66–77, Sogamoso-Boyacá. Colombia, ISSN Impreso 1900-771X, ISSN Online 2422-4324

  • Ristorini, M., Astolfi, M. L., Frezzini, M. A., Canepari, S., & Massimi, L. (2020). Evaluation of the efficiency of Arundo donax L. leaves as biomonitors for atmospheric element concentrations in an urban and industrial area of central italy. Atmosphere, 11, 226. https://doi.org/10.3390/atmos11030226

    Article  CAS  Google Scholar 

  • Riveros, F. (2014). Level of heavy metal contamination in agricultural soils and their efects in vegetables in the valley Higueras, Huanuco. Universidad Nacional Hermilio Valdizán. Valdizana Research, 8(2), 42–51. ISSN: 1994–1420. In (2020) https://www.redalyc.org/articulo.oa?id=5860/586061891007

  • Robinson, B. H., Bischofberger, S., Stoll, A., Schroer, D., Furrer, G., Roulier, S., Gruenwald, A., Attinger, W., & Schulin, R. (2008). Plant uptake of trace elements on a Swiss military shooting range: Uptake pathways and land management implications. Environmental Pollution, 153(3), 668–676. https://doi.org/10.1016/j.envpol.2007.08.034

    Article  CAS  Google Scholar 

  • Rojos, S., Aguilar, G., Sepúlveda, B., & Pavez, O. (2019). Dinámica de la concentración de cobre, plomo, mercurio y arsénico en sedimentos del Río Copiapó. Chile. RICA, 35(2), 361–370.

    Article  Google Scholar 

  • Rubio, C., Gutiérrez, A. J., Martín, R. E., Revert, C., Lozano, G., & Hardisson, A. (2004). El plomo como contaminante alimentario. Revista De Toxicología, 21(2–3), 72–80.

    CAS  Google Scholar 

  • SAG. (2005). Criterios de calidad de aguas o efluentes tratados para uso en riego informe final marzo 2005. Ed. División de Recursos Hídricos y Medio Ambiente, Departamento de Ingeniería Civil, Universidad de Chile. P. 190. Disponible en Biblioteca digital CIREN http://biblioteca-digital.sag.gob.cl/documentos/medio_ambiente/criterios_calidad_suelos_aguas_agricolas/pdf_aguas/informe_final.pdf

  • Said, O. B. S., da Silva, M. M., Hannier, F., Beyrem, H., & Chícharo, L. (2019). Using Sarcocornia fruticosa and Saccharomyces cerevisiae to remediate metal contaminated sediments of the Ria Formosa lagoon (SE Portugal). Ecohydrology & Hydrobiology, 19(4), 588–597. https://doi.org/10.1016/j.ecohyd.2018.10.002

    Article  Google Scholar 

  • SERNAGEOMIN. (2015). Efectos geológicos del evento meteorológico del 24 y 25 de marzo de 2015. Observaciones geológicas de la Comunas de Paipote y la ciudad de Copiapó, afectada por crecidas del río Copiapó y remociones en masa de la Quebrada Paipote. INF-ATACAMA-05. p. 19. http://sitiohistorico.sernageomin.cl/pdf/mapa-geo

  • Sierra, M. J., Afif, E., Díaz, T. E., Gallego, J. R., & Millán, R. (2017). Geochemical study of a mining-metallurgy site polluted with As and Hg and the transfer of these contaminants to Equisetum sp. Journal of Geochemical Exploration, 182(1), 1–9. https://doi.org/10.1016/j.gexplo.2017.08.008

    Article  CAS  Google Scholar 

  • Smillie, C. (2015). Salicornia spp. as a biomonitor of Cu and Zn in salt marsh sediments. Ecological Indicators, 56, 70–78. https://doi.org/10.1016/j.ecolind.2015.03.010

    Article  CAS  Google Scholar 

  • Stegen, S., Queirolo, F., Contador, Y., Pastenes, J., Mohl, C., Backhaus, F., & Ostapczuk, P. (2000). Tessaria absinthioides: a possible biomonitor for Cd, Pb, and Cu, in the middle and lower basin of the loa river, North Chile. Toxicological & Environmental Chemistry, 77(1–2), 107–118. https://doi.org/10.1080/02772240009358941

  • Stegen, S., Queirolo, F., Contador, Y., Pastenes, J., Mohl, C., Backhaus, F., & Ostapczuk, P. (2008). Tessaria absinthioides: A possible bio-monitor for Cd, Pb, and Cu, in the middle and lower basin of the loa river. North Chile. Toxicological & Environmental Chemistry, 77(1–2), 107–118. https://doi.org/10.1080/02772240009358941

    Article  Google Scholar 

  • Tiecher, T. L., Tiecher, T., Ceretta, C. A., Ferreira, P. A. A., Nicoloso, F. T., Soriani, H. H., De Conti, L., Kulmann, M. S. S., Schneider, R. O., & Brunetto, G. (2017). Tolerance and translocation of heavy metals in young grapevine (Vitis vinifera) grown in sandy acidic soil with interaction of high doses of copper and zinc. Scientia Horticulturae, 222, 203–212. https://doi.org/10.1016/j.scienta.2017.05.026

    Article  CAS  Google Scholar 

  • Vårhammar, A., McLean, C. M., & MacFarlane, G. R. (2019). Uptake and partitioning of metals in the Australian saltmarsh halophyte, samphire (Sarcocornia quinqueflora). Aquatic Botany, 156, 25–37. https://doi.org/10.1016/j.aquabot.2019.04.001

    Article  Google Scholar 

  • Yan, X., An, J., Yin, Y., Gao, C., Wang, B., & Wei, S. (2022). Heavy metals uptake and translocation of typical wetland plants and their ecological effects on the coastal soil of a contaminated bay in Northeast China. Science of the Total Environment, 803, 149871. https://doi.org/10.1016/j.scitotenv.2021.149871

    Article  CAS  Google Scholar 

  • Young, S. D. (2013). Chemistry of heavy metals and metalloids in soils. In B. Alloway (Ed.), Heavy metals in soils. Environmental pollution. (Vol. 22). Springer. https://doi.org/10.1007/978-94-007-4470-7_3

    Chapter  Google Scholar 

  • Zhao, R., Zhao, M., Zhang, L., Wang, Y., Zhang, X., & Zhou, Y. (2021). An approach to the use of plants for monitoring soil conditions in wetlands in arid áreas. CATENA, 199, 105113. https://doi.org/10.1016/j.catena.2020.105113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to the Universidad de Atacama for the financing and logistical support through the Regional Center for Research and Sustainable Development of Atacama (CRIDESAT) and the Institute of Scientific and Technological Research (Instituto de Investigaciones Científicas y Technological, IDICTEC). Thanks to the Center for Research in Biodiversity and Sustainable Environments (Centro de Investigación en Biodiversidad y Ambientes Sostenibles, CIBAS) of the Universidad Católica de la Santísima Concepción, for the professional support and in the management of the project and the publication.

Funding

This article was founded by the Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT-UDA), Universidad de Atacama (Copiapó, Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Sepúlveda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of intrest.

Consent to participate

All authors participate by consent.

Consent for publication

The authors consent to the publication of these data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepúlveda, B., Rojos, S., Silva, W. et al. Uptake of Cu, Hg, and As in wild vegetation, associated to surface water in the Copiapó valley, before the 2015 alluvium. Environ Geochem Health 45, 137–149 (2023). https://doi.org/10.1007/s10653-022-01296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01296-8

Keywords

Navigation