Skip to main content
Log in

Effect of natural organic matter on arsenic release from soils and sediments into groundwater

  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Arsenic (As) contamination in groundwater has received significant attention recently. Natural and anthropogenic sources contribute to the worldwide occurrence of As contamination. As speciation is an important factor related to its toxic and mobile behavior. The release of As from soils and sediments into groundwater is governed by several geophysicochemical processes, of which, As sorption behavior is of principle significance. This review paper summarizes existing information regarding the effects of natural organic matter (NOM) on the fate and mobility of As species in the environment. NOM may enhance the release of As from soils and sediments into the soil solution, thereby facilitating As leaching into the groundwater. The main influencing mechanisms include competition for available adsorption sites, formation of aqueous complexes, and/or changes in the redox potential of site surfaces and As redox speciation. NOM may also serve as binding agents, thereby reducing As mobility. However, comparably little research has been performed on this aspect. Since most investigations have been done on purified minerals under laboratory conditions, further research involving various geological materials under natural environmental conditions is required. Development of proper geochemical conceptual models may provide means of predicting the role of NOM in arsenic leaching and/or immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Allinson G, Turoczy N, Kelsall Y, Allinson M, Stagnitti F, Nishikawa M, 2000, Mobility of the constituents of chromated copper arsenate in a shallow, sandy soil New Zealand J Agricult Res 43:149–156

    CAS  Google Scholar 

  • Amina LR, Mandal SR, Hassan NM, et al. 1999, Effect of metal/fulvic acid mole ratios on the binding of Ni(II), Pb(II), Cu(II), Cd(II), and Al(III) by two well-characterized fulvic acids in aqueous model solution Anal Chim Acta 402:211–221

    Article  Google Scholar 

  • Anawar HM, Akai J, Komaki K, et al. 2003, Geochemical occurrence of arsenic in groundwater of Bangladesh: source and mobilization processes J Geochem Explorer 77:109–131

    Article  CAS  Google Scholar 

  • Anderson MA, Ferguson JF, Gavis J, 1976, Arsenate adsorption on amorphous aluminum hydroxide J Colloid Interface Sci 54:391–399

    Article  CAS  Google Scholar 

  • Armienta MA, Villasenor G, Rodriguez R, Ongley LK, Mango H, 1993, The role of arsenic-bearing rocks in groundwater pollution at Zimapán Valley, México Environ Geol 40:571–581

    Article  Google Scholar 

  • Azcue JM, Mudroch A, Rosa F, Hall GEM, 1994, Effects of abandoned gold mine tailings on the arsenic concentrations in water and sediments of Jake of Clubs Lakes, B. C. Environ Technol 15:669–678

    Article  CAS  Google Scholar 

  • Azcue JM, Niragu JO, 1994, Arsenic: historical perspectives. In: Niragu JO, (ed.), Arsenic in the Environment, Part I, Cycling and Characterization, John Wiley & Sons, New York. pp. 1–15

    Google Scholar 

  • Bhattacharya P, Jacks G, Ahmed KM, Khan AA, Routh J, 2002, Arsenic in groundwater of the Bengal Delta Plain aquifers in Bangladesh Bull Environ Contamin Toxicol 69:538–545

    Article  CAS  Google Scholar 

  • Bhumbla DK, Keefler RF, 1994, Arsenic mobilization and bioavailability in soils. In: Niragu JO, (ed.), Arsenic in the Environment, Part I, Cycling and Characterization, John Wiley & Sons, New York. pp. 51–82

    Google Scholar 

  • Bloom PR, 1981, Phosphorus adsorption by an aluminium–peat complex Soil Sci Soc Am J 45:267–272

    Article  CAS  Google Scholar 

  • Bodek I, Lyman WJ, Reehl WF, Rosenblatt DH, 1988, Environmental Inorganic Geochemistry, Pergaman, NY

    Google Scholar 

  • Bowell RJ, 1994, Sorption of arsenic by iron oxides and oxyhydroxides in soils Appl Geochem 9:279–286

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH, Lovley DR, 1998, Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene Appl Environ Microbiol 64:3102–3105

    PubMed  CAS  Google Scholar 

  • Breault RF, Colman JA, Aiken GR, McKnight D, 1996, Copper speciation and binding by organic matter in copper-contaminated streamwater Environ Sci Technol 30:3477–3486

    Article  CAS  Google Scholar 

  • Buffle J. 1977 Les substances humiques et leurs interactions avec les ions mineraus. In Conference Proceedings de la Commission d’Hydrologie Appliquee de l’A.G.H.T.M. L’University d’Orsay, pp. 3–10

  • Chatterjee A, Das D, Mandal BK, Chowdhury TR, Samanta G, Chakraborti D, 1995, Arsenic in groundwater in 6 districts of West Bengal, India – the biggest arsenic calamity in the world. 1. Arsenic species in drinking water and urine of the affected people Analyst 120:643–650

    Article  Google Scholar 

  • Clarke MB, Helz GR, 2000, Metal-thiometalate transport of biologically active trace elements in sulfidic environments. I. Experimental evidence for copper thioarsenite complexing Environ Sci Technol 34:1447–1482

    Article  CAS  Google Scholar 

  • Colbourn P, Alloway BJ, Thornton I, 1975, Arsenic and heavy metals in soils associated with regional geochemical and anomalies in south-west England Sci Total Environ 4:359–363

    Article  CAS  Google Scholar 

  • Cornu S, Saada A, Breeze D, Gauthier S, Baranger P, 1999, Influencede composés organiques sur l’adsorption de l’arsenic par les kaolinites Comptes Rendus de l’Académie des Sciences - Series IIA – Earth Planet Sci 28:877–881

    Google Scholar 

  • Crist RH, Martin JR, 1999, Interaction of metal ions with acid sites of biosorbents peat moss and Vaucheria and model substances alginic and humic acids Environ Sci Technol 33:2252–2256

    Article  CAS  Google Scholar 

  • Cullen WR, Reimer KJ, 1989, Arsenic speciation in the environment Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  • Ding Z, Zheng B, Long J, et al. 2001, Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China Appl Geochem 16:1353–1360

    Article  CAS  Google Scholar 

  • Dzombak DA, 1990, Surface Complexation Modeling: Hydrous Ferric Oxide. John Wiley & Sons, New York

    Google Scholar 

  • Eick MJ, Peak JD, Brady WD, 1999, The effect of oxyanions on the oxalate-promoted dissolution of goethite Soil Sci Soc Am J 63:1133–1141

    Article  CAS  Google Scholar 

  • Farquhar ML, Charnock JM, Livens FR, Vaughan DJ, 2002, Mechanisms of Arsenic uptake from aqueous solution by interaction with goethite, lepidpcrocite, mackinawite, and pyrite: an X-ray absorption spectroscopy study Environ Sci Technol 36:1757–1762

    Article  PubMed  CAS  Google Scholar 

  • Fendorf S, Eick MJ, Grossl P, Sparks JD, 1997, Arsenate and chromate retention mechanisms on goethite: 1. Surface structure Environm Sci Technol 31:315–320

    Article  CAS  Google Scholar 

  • Ferguson JF, Gavis J, 1972, A review of the arsenic cycle in natural waters Water Res 6:1259–1274

    Article  CAS  Google Scholar 

  • Filella M, Buffle J, Leeuwen HPV, 1990, Effect of physico-chemical heterogeneity of natural complexants. Part I. Voltammetry of labile metal–fulvic complexes Anal Chim Acta 232:209–223

    Article  CAS  Google Scholar 

  • Fontes MR, Weed SB, Bowen LH, 1992, Association of microcrystalline goethite and humic acid in some Oxisols from Bazil Soil Sci Soc Am J 56:982–990

    Article  CAS  Google Scholar 

  • Frost RR, Griffin RA, 1977, Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay minerals Soil Sci Soc Am J 41:53–57

    Article  CAS  Google Scholar 

  • Fuller CC, Davies JA, Waychunas GA, 1993, Surface chemistry of ferrihydrite: part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim Cosmochim Acta 57:2271–2282

    Article  CAS  Google Scholar 

  • Gault AG, Polya DA, Lythgoe PR, et al. 2003. Arsenic speciation in surface waters and sediments in a contaminated waterway: an IC-ICP-MS and XAS based study Appl Geochem 18:1387–1397

    Article  CAS  Google Scholar 

  • Geelhoed JS, Hiemsta T, Riemsdijk WHV, 1998, Competitive adsorption between phosphate and citrate on goethite Environ Sci Technol 32:2119–2123

    Article  CAS  Google Scholar 

  • Goldberg S, Johnston CT, 2001, Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling J Colloid Interface Sci 234:204–216

    Article  PubMed  CAS  Google Scholar 

  • Goodarzi F, Huggins FE, 2001, Monitoring the species of arsenic, chromium and nickel in milled coal bottom ash and fly ash from a pulverized coal-fired power plant in western Canada J Environ Monitor 3:1–6

    Article  CAS  Google Scholar 

  • Gong Z, Lu X, Ma M, Watt C, Le XC, 2002, Arsenic speciation analysis Talanta 58:77–96

    Article  CAS  Google Scholar 

  • Grafe M, Eick MJ, Grossl PR, 2001, Adsorption of arsenate (V) and arsenite (III) on goethite in the presence and absence of dissolved organic carbon Soil Sci Soc Am J 65:1680–1687

    Article  CAS  Google Scholar 

  • Grafe M, Eick MJ, Grossl PR, Saunders AM, 2002, Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon J Environ Qual 31:1115–1123

    PubMed  CAS  Google Scholar 

  • Grossl PR, Eick M, Sparks DL, Goldberg S, Ainsworth CC, 1997, Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique Environ Sci Technol 31:321–326

    Article  CAS  Google Scholar 

  • Gulens J, Champ DR, Jackson RE,: 1979, Influence of redox environments on the mobility of arsenic in ground water. In: Jenne EA, (ed.), Chemical Modeling in Aqueous Systems, ACS Symposium Series 93. American Chemical Society, Washington, DC. pp.81–95

    Google Scholar 

  • Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF, 1994, Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models Environ Sci Technol 28:38–46

    Article  CAS  Google Scholar 

  • Harvey CF, Swartz CH, Badruzzaman ABM, et al. 2002, Arsenic mobility and groundwater extraction in Bangladesh Science 298:1602–1606

    Article  PubMed  CAS  Google Scholar 

  • Hingston FJ, Posner AM, Quirk JP, 1972, Anion adsorption by goethite and gibbsite: 1. The role of the proton in determining adsorption envelopes J Soil Sci 23:177–192

    CAS  Google Scholar 

  • Hisa TH, Lo SL, Lin CF, Lee DY, 1994, Characterization of arsenate adsorption on hydrous iron oxide using chemical and physical methods. Colloids Surfaces A: Physicochem Eng Aspects 85:1–7

    Article  Google Scholar 

  • Iimura K, 1981, Background contents of heavy metals in Japanese soils. In: Kitagishi K, Yamane I, (eds.), Heavy Metal Pollution in Soil of Japan, Japanese Science Society Press, Tokyo. pp.19–26

    Google Scholar 

  • Jain A, Raven KP, Leoppert RH, 1999, Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH- release stoichiometry Environ Sci Technol 33:1179–1184

    Article  CAS  Google Scholar 

  • Kaiser K, Guggenberger G, Haumaier L, Zech W, 1997, Dissolved organic matter sorption on subsoils and minerals studied by 13C-NMR and DRIFT spectroscopy Eur J Soil Sci 48:301–310

    Article  Google Scholar 

  • Kalbitz K, Wennrich R, 1998, Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter Sci Total Environ 209:27–39

    Article  PubMed  CAS  Google Scholar 

  • Kim MJ, Nrigau JO, Haack SK, 2000, Carbonate ions and arsenic dissolution by groundwater Environ Sci Technol 34:3094–3100

    Article  CAS  Google Scholar 

  • Ko I, Kim JY, Kim KW, 2004, Arsenic speciation and sorption kinetics in the As-hematite-humic acid system Colloids Surfaces A: Physicochem Eng Aspects 234:43–50

    Article  CAS  Google Scholar 

  • Korte NE, Fernando Q, 1991, A review of arsenic(III) in groundwater Crit Rev Environ Control 21:1–40

    Article  CAS  Google Scholar 

  • Kosmulski M, 2001, Chemical Properties of Material Surfaces. Marcel Dekker Inc. NY

    Google Scholar 

  • Lamble KJ, Hill SJ,: 1996, Arsenic speciation in biological samples by on-line high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry Anal Chem Acta 334:261–270

    Article  CAS  Google Scholar 

  • Lee C, Harrison TA, 2004, The catena-arsenite chain anion, [AsO2] n n : (H3NCH2CH2NH3)0.5[AsO2] and NaAsO2 (revisited) Acta Crystallogr C60:m215–m218

    CAS  Google Scholar 

  • Lin Z, Puls RW, 2000, Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process Environ Geol 39:753–759

    Article  CAS  Google Scholar 

  • Lin HT, Wang MC, Li GC, 2004, Complexation of arsenate with humic substance in water extract of compost Chemosphere 56:1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Lopez-Avila U, Zhu JJ, Wiederia DR, Bechert WF, 1995, Capillary electrophoresis coupled on-line with inductively coupled plasma mass spectrometry for elemental speciation Anal Chem 67:2020–2025

    Article  Google Scholar 

  • Manceau A, 1995, The mechanisms of anion adsorption on iron oxides: evidence for the bonding of arsenate tetrahedral on free Fe(O,OH)6 edges Geochim Cosmochim Acta 59:3647–3653

    Article  CAS  Google Scholar 

  • Manning BA, Goldberg S, 1996a, Modeling arsenate competitive adsorption on kaolinite, montmorillonite, and illite Clays Clay Minerals 44:609–623

    CAS  Google Scholar 

  • Manning BA, Goldberg S, 1996b, Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals Soil Sci Soc Am J 60:121–131

    Article  CAS  Google Scholar 

  • Manning BA, Goldberg S, 1997, Adsorption and stability of arsenic(III) at the clay mineral-water interface Environ Sci Technol 31:2005–2011

    Article  CAS  Google Scholar 

  • Manyes SG, Jimenez G, Padro A, Rubio R, Rauret G, 2002, Arsenic speciation in contaminated soils Talanta 58:97–109

    Article  Google Scholar 

  • Matera V, Hecho IL, Laboudigue A, Thomas P, Tellier S, Astruc M, 2003, A methodological approach for the identification of arsenic bearing phases in polluted soils Environ Pollut 126:51–64

    Article  PubMed  CAS  Google Scholar 

  • Matisoff GC, Khourey CJ, Hall JF, Varnes AW, Strain WH, 1982, The nature and source of arsenic in northeastern Ohio groundwater Ground Water 20:446–456

    Article  CAS  Google Scholar 

  • McArthur JM, Ravenscroft P, Safiullah S, Thirlwall MF, 2001, Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh Water Resour Res 37:109–117

    Article  CAS  Google Scholar 

  • McArthur JM, Banerjee DM, Hudson-Edwards KA, et al. 2004, Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications Appl Geochem 19:1255–1293

    Article  CAS  Google Scholar 

  • McKnight DM, Bencala KE, Zellweger GW, Alken GR, Feder GL, Thorn KA, 1992, Sorption of dissolved organic carbon by hydrous aluminum and iron oxides occurring at the confluence of Deer Creek with the Snake River, Summit County, Colorado Environ Sci Technol 26:1388–1398

    Article  CAS  Google Scholar 

  • Michalke B, 2003, Element speciation definitions, analytical methodology, and some examples Ecotoxicol Environ Safety 56:122–139

    Article  PubMed  CAS  Google Scholar 

  • Mok WM, Wai CM, 1994, Mobilization of arsenic in contaminated river waters. In: Nriagu JO, (ed.), Arsenic in the Environment, Part I: Cycling and Characterization, John Wiley & Sons, New York. pp. 99–117

    Google Scholar 

  • Mulligan CN, Dahr Azma B, 2003, Use of selective sequential extraction for the remediation of contaminated sediments. In Locat J, Galvez-Cloutier R, Chaney RC, Demars KR, (eds.), Contaminated Sediments: Characterization, Evaluation, Mitigation/Restoration, and Management Strategy Performance. ASTM International, PA. pp. 208–223

    Google Scholar 

  • Naidu R, Smith J, McLaren RG, Stevens DP, Sumner ME, Jackson PE, 2000, Application of capillary electrophoresis to anion speciation in soil water extracts: II. Arsenic Soil Sci Soc Am J 64:122–128

    Article  CAS  Google Scholar 

  • Nasu T, Kan R, 1988, Determination of phosphate, arsenate and arsenite in natural water by floatation-spectrometry and extraction indirect atomic absorption spectrometry using malachite green as an ion pair reagent Analyst 113:1683–1686

    Article  CAS  Google Scholar 

  • Nickson RT, McArthur JM, Burgess WG, Ahmed KM, Ravenscroft P, Rahman M, 1998, Arsenic poisoning of Bangladesh groundwater. Nature 395:338

    CAS  Google Scholar 

  • Nickson RT, McArthur JM, Ravenscroft P, Burgess WG, Ahmed KM, 2000, Mechanism of arsenic release to groundwater, Bangladesh and West Bengal Appl Geochem 15:403–413

    Article  CAS  Google Scholar 

  • NRC (National Research Council). 1999 Arsenic in Drinking Water. Washington, DC: National Academy Press

  • Oden KL, Gladysheva TB, Rosen BP, 1994, Arsenate reduction mediated by the plasmid-encoded ArsC protein is coupled to glutathione Mol Microbiol 12:301–306

    PubMed  CAS  Google Scholar 

  • Ogden PR. 1990 Arsenic behavior in soil and groundwater at a Superfund site. In Superfund ’90. Silver Spring, MD: Hazardous Materials Control Research Institute, pp. 123–127

  • Oscarson DW, Huang PM, Hammer UT, 1983, Oxidation and sorption of arsenite as influenced by surface coatings of iron and aluminum oxides and calcium carbonate Water Air Soil Pollut 20:233–244

    Article  CAS  Google Scholar 

  • Pal T, Mukherjee PK, Sengupta S, 2002, Nature of arsenic pollutants in groundwater of Bengal basin, a case study from baruipur area, West Bengal, India Curr Sci 82:554–561

    CAS  Google Scholar 

  • Parfitt RL, Fraser AR, Farmer VC, 1977, Adsorption on hydrous oxides. III. Fulvic acid and humic acid on goethite, gibbsite and imogolite J Soil Sci 28:289–296

    CAS  Google Scholar 

  • Perdue EM, Reuter JH, Ghosal M, 1980, The operational nature of acidic functional group analyses and its impact on mathematical descriptions of acid–base equilibria in humic substances Geochim Cosmochim Acta 44:1841–1851

    Article  CAS  Google Scholar 

  • Peters SC, Blum JD, Klaue B, Karagas MR, 1999, Arsenic occurrence in New Hampshire drinking water Environ Sci Technol 33:1328–1333

    CAS  Google Scholar 

  • Piccolo A, Stevensons FJ, 1981, Infrared spectra of Cu2+, Pb2+, and Ca2+ complexes of soil humic substances Geoderma 27:195–208

    Article  Google Scholar 

  • Pierce ML, Moore CB, 1980, Adsorption of arsenite on amorphous iron hydroxide from dilute aqueous solution Environ Sci Technol 14:214–216

    Article  CAS  Google Scholar 

  • Pierce ML, Moore CB, 1982, Adsorption of arsenite and arsenate on amorphous iron hydroxide Water Res 16:1247–1253

    Article  CAS  Google Scholar 

  • Prior HL, Williams GA, 1996, Some mines and minerals of Morgan County, Missouri Rocks Minerals 71:102–110

    Article  Google Scholar 

  • Reddy MM, Aiken GR, 2001, Fulvic acid-sulfide ion competition for mercury ion binding in the Florida Everglades Water, Air Soil Pollut 132:89–104

    CAS  Google Scholar 

  • Redman AD, Macalady D, Ahmann D, 2002, Natural organic matter affects arsenic speciation and sorption onto hematite Environ Sci Technol 36:2889–2896

    Article  PubMed  CAS  Google Scholar 

  • Saada A, Breeze D, Crouzet C, Cornu S, Baranger P, 2003, Adsorption of arsenic (V) on kaolinite–humic acid complexes: Role of humic acid nitrogen groups Chemosphere 51:757–763

    Article  PubMed  CAS  Google Scholar 

  • Sadiq M, 1997, Arsenic chemistry in soils: an overview of thermodynamic prediction and field observation Water Air Soil Pollut 93:117–136

    Article  CAS  Google Scholar 

  • Savage KS, Tingle TN, O’Day PA, Waychunas GA, Bird BD, 2000, Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California Appl Geochem 15:1219–1244

    Article  CAS  Google Scholar 

  • Schramel O, Michalke B, Kettrup A, 1999, Application of capillary electrophoresis-electrospray ionisation mass spectrometry to arsenic speciation J Anal Atom Spectromet 14:1339–1342

    Article  CAS  Google Scholar 

  • Schreiber ME, Gotkowitz MB, Simo JA, Freiberg PG, 2003, Mechanisms of arsenic release from naturally occurring sources, Eastern Wisconsin In: Welch AH, Stollenwerk KG, (eds.), Arsenic in Ground Water: Geochemistry and Occurrence, Kluwer Academic Publishers, Boston. pp. 259–280

    Google Scholar 

  • Schwarzenbach RP, Stierli R, Lanz K, Zeyer J, 1990, Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution Environ Sci Technol 24:1566–1574

    Article  CAS  Google Scholar 

  • Scott DT, McKnight DM, Harris BEL, Kolesar SE, Loveley DR, 1998, Quinone moieties cat as electron acceptors in the reduction of humic substances by humic-reducing microorganisms Environ Sci Technol 32:2984–2989

    Article  CAS  Google Scholar 

  • Sharma P, 1995, Sequential trace determination of arsenic(III) and arsenic(V) by differential pulse polarography Anal Sci 11:261–266

    CAS  Google Scholar 

  • Sheppard SC, 1992, Summary of phytotoxic levels of soil arsenic Water Air Soil Pollut 64:539–550

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG, 2002, A review of the source, behavior and distribution of arsenic in natural waters Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smedley PL, 2003, Arsenic in groundwater – south and east Asia. In: Welch AH, Stollenwerk KG, (eds.), Arsenic in Ground Water: Geochemistry and Occurrence, Kluwer Academic Publishers, Boston. pp. 179–209

    Google Scholar 

  • Smith E, Naidu R, Alston AM, 1998, Arsenic in the soil environment: a review Adv Agron 64:149–195

    Article  CAS  Google Scholar 

  • Smith E, Naidu R, Alston AM, 2002, Chemistry of inorganic arsenic in soils: II. Effects of phosphorus, sodium, and calcium on arsenic sorption J Environ Qual 31:557–563

    Article  PubMed  CAS  Google Scholar 

  • Sparks DL, 2003, Environmental Soil Chemistry. 2nd, Academic Press, New York

    Google Scholar 

  • Sposito G, 1984, The Surface Chemistry of Soils. Oxford University Press, UK

    Google Scholar 

  • Stevenson FJ, 1982, Humus Chemistry; Genesis, Composition, Reactions. Wiley-Inter-science, New York

    Google Scholar 

  • Stone AT, Godtfredsen KL, Deng B, 1994, Sources and reactivity of reductants encountered in aquatic environments. In Bidoglio G, Stumm W, (eds.), Chemistry of Aquatic Systems: Local and Global Perspectives. ECSC. pp.337–374

    Google Scholar 

  • Struyk Z, Sposito G, 2001, Redox properties of standard humic acids Geoderma 102:329–346

    Article  CAS  Google Scholar 

  • Stryer L, 1981, Biochemistry. W.H. Freeman, New York

    Google Scholar 

  • Styblo M, Razo LMD, Vega L, et al. 2000, Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells Arch Toxicol 74:289–299

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Doner HE, 1996, An investigation of arsenite and arsenate bonding structures on goethite by FTIR Soil Sci 161:865–872

    Article  CAS  Google Scholar 

  • Sunda WG, Kieber DJ, 1994, Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates Nature 367:62–65

    Article  CAS  Google Scholar 

  • Takahashi Y, Minai Y, Ambe S, Makide Y, Ambe F, 1999, Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique Geochim Cosmochim Acta 63:815–836

    Article  CAS  Google Scholar 

  • Tamaki S, Frankenberger Jr, 1992, Environmental biochemistry of arsenic Rev Environ Contamin Toxicol 124:79–110

    CAS  Google Scholar 

  • Tanabe K, Yokota H, Hironaka H, Tsusgima S, Kubota Y, 2001, Arsenic pollution of groundwater in Bangladesh Appl Organometal Chem 15:241–251

    Article  CAS  Google Scholar 

  • Tessema DA, Kosmus W, 2001, Influence of humic acid and low molecular weight polycarboxylic acids on the release of arsenic from soils J Trace Microprobe Tech 19:267–278

    Article  CAS  Google Scholar 

  • Thanabalasingam P, Pickering WF, 1986, Arsenic sorption by humic acids Environ Pollut 12:223–246

    Google Scholar 

  • Thomas DJ, Styblo M, Lin S, 2001, The cellular metabolism and systemic toxicity of arsenic Appl Pharmacol 176:127–144

    Article  CAS  Google Scholar 

  • Tseng WP, Chu HM, How SW, Fong JM, Lin CS, Yeh S, 1968, Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan J Natl Cancer Inst 40:453–463

    PubMed  CAS  Google Scholar 

  • Van Herreweghe S, Swennen R, Vandecasteele C, Cappuyns V, 2003, Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples Environ Pollut 122:323–342

    Article  PubMed  Google Scholar 

  • Vinkler P, Lakatos B, Meisel J, 1976, Infrared spectroscopic investigations of humic substances and their metal complexes Geoderma 15:231–242

    Article  CAS  Google Scholar 

  • Waltham CA, Eick MJ, 2002, Kinetics of arsenic adsorption on goethite in the presence of sorbed silicic acid Soil Sci Soc Am J 66:818–825

    Article  CAS  Google Scholar 

  • Wang S, Mulligan CN. 2004 Arsenic in Canada. In Proceedings of the 57th Canadian Geotechnical Conference & 5th Joint-IAH-CNS/CGS Conference, Session ID, Environmental Geotechnology 1. October 2004. Quebec, Canada. pp 1–8

  • Warren HV, Delavault RE, Barakso J, 1964, The role of arsenic as a pathfinder in biogeochemical prospecting Econ Geol 59:1381–1386

    Article  CAS  Google Scholar 

  • Waychunas GA, Rea BA, Fuller CC, Davis JA, 1993, Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate Geochim Cosmochim Acta 57:2251–2269

    Article  CAS  Google Scholar 

  • Welch AH, Lico MS, 1997, Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada Appl Geochem 13:521–539

    Article  Google Scholar 

  • Welch AH, Westjohn DB, Helsel DR, Wanty RB, 2000, Arsenic in ground water of the United States: occurrence and geochemistry Ground Water 38:589–604

    Article  CAS  Google Scholar 

  • WHO (World Health Organization). 1993 Guidelines for Drinking Water Quality, 2nd edn, Vol. 1, Recommendations. Geneva

  • Woolson EA, Kearney PC, 1973, Persistence and reactions of 14C-cacodylic acid in soils Environ Sci Technol 7:47–50

    Article  CAS  Google Scholar 

  • Xu H, Allard B, Grimvall A, 1988, Influence of pH and organic substance on the adsorption of As(V) on geological materials Water Air Soil Pollut 40:293–305

    CAS  Google Scholar 

  • Xu H, Allard B, Grimvall A, 1991, Effects of acidification and natural organic materials on the mobility of arsenic in the environment Water Air Soil Pollut 57/58:269–278

    Article  Google Scholar 

  • Yong RN, Mulligan CN, 2004, Natural Attenuation of Contaminants in Soils CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine N. Mulligan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Mulligan, C.N. Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environ Geochem Health 28, 197–214 (2006). https://doi.org/10.1007/s10653-005-9032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-005-9032-y

Keywords

Navigation