Skip to main content
Log in

Experimental investigation of channel flow through idealized isolated tree-like vegetation

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Riparian and floodplain tree-like emergent vegetation alter significantly the flow field and lead to complicated three-dimensional flow patterns, characterized by increased turbulence production, with the potential to induce morphological changes. The canopy presence in tree-like vegetation leads to the formation of lee wake vortices and can induce a strong subcanopy flow. The present experimental study employs artificial, rigid, tree-like emergent vegetation elements, with relatively simple structure, in order to investigate the canopy effects on the flow field. Specifically, the tree-like canopy is simulated by placing an element on top of a wooden rod simulating the trunk. Three elements with an equal encircling diameter of 16 cm are examined as canopy in tree-like vegetation, namely a circular cylinder and two hexagonal arrays comprising smaller circular cylinders with two different individual diameters. The experiments were conducted in a 26 m long laboratory flume and the velocity measurements were carried out with an acoustic Doppler velocimeter. The results show that the canopy porosity has a direct impact on the subcanopy flow intensity and on the required distance that the flow needs to recover. In addition, the subcanopy flow disrupts the formation of a steady wake region behind the entire porous element and inhibits the development of a recognizable von Karman vortex street.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gran K, Paola C (2001) Riparian vegetation controls on braided stream dynamics. Water Resour Res 37(12):3275–3283. doi:10.1029/2000WR000203

    Article  Google Scholar 

  2. Gurnell A (2014) Plants as river system engineers. Earth Surf Process Landf 39:4–25. doi:10.1002/esp.3397

    Article  Google Scholar 

  3. Tsujimoto T (1999) Fluvial processes in streams with vegetation. J Hydraul Res 37(6):789–803. doi:10.1080/00221689909498512

    Article  Google Scholar 

  4. Chen Z, Ortiz A, Zong L, Nepf H (2012) The wake structure behind a porous obstruction and its implications for deposition near a finite patch of emergent vegetation. Water Resour Res 48(9):W09517. doi:10.1029/2012WR012224

    Google Scholar 

  5. Ortiz AC, Ashton A, Nepf H (2013) Mean and turbulent velocity fields near rigid and flexible plants and the implications for deposition. J Geophys Res 118(4):2585–2599. doi:10.1002/2013JF002858

    Article  Google Scholar 

  6. Corenblit D, Steiger J, Gurnell AM, Tabacchi E, Roques L (2009) Control of sediment dynamics by vegetation as a key function driving biogeomorphic succession within fluvial corridors. Earth Surf Process Landf 34(13):1790–1810. doi:10.1002/esp.1876

    Article  Google Scholar 

  7. Gurnell AM, Bertoldi W, Corenblit D (2012) Changing river channels: the roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth Sci Rev 111(1–2):129–141. doi:10.1016/j.earscirev.2011.11.005

    Article  Google Scholar 

  8. Nikora V (2010) Hydrodynamics of aquatic ecosystems: an interface between ecology, biomechanics and environmental fluid mechanics. River Res Applic 26:367–384. doi:10.1002/rra.1291

    Article  Google Scholar 

  9. Aberle J, Jarvela J (2013) Flow resistance of emergent rigid and flexible floodplain vegetation. J Hydrau Res 51(1):33–45. doi:10.1080/00221686.2012.754795

    Article  Google Scholar 

  10. Albayrak I, Nikora V, Miler O, O’Hare MT (2014) Flow-plant interactions at leaf, stem and shoot scales: drag, turbulence, and biomechanics. Aquat Sci 76:269–294. doi:10.1007/s00027-013-0335-2

    Article  Google Scholar 

  11. Palmer MA, Bernhardt ES, Allan JD, Lake PS, Alexander G, Brooks S, Carr J, Clayton S, Dahm CN, Follstad Shah J, Galat DL, Loss SG, Goodwin P, Hart DD, Hassett B, Jenkinson R, Kondolf GM, Lave R, Meyer JL, O’Donnell TK, Pagano L, Sudduth E (2005) Standards for ecologically successful river restoration. J Appl Ecol 42(2):208–217. doi:10.1111/j.1365-2664.2005.01004.x

    Article  Google Scholar 

  12. Beechie TJ, Sear DA, Olden JD, Pess GR, Buffington JM, Moir H, Roni P, Pollock MM (2010) Process-based principles for restoring river ecosystems. Bioscience 60(3):209–222. doi:10.1525/bio.2010.60.3.7

    Article  Google Scholar 

  13. Camporeale C, Perucca E, Ridolfi L, Gurnell AM (2013) Modeling the interactions between river morphodynamics and riparian vegetation. Rev Geophys 51:379–414. doi:10.1002/rog.20014

    Article  Google Scholar 

  14. Nepf HM (2012) Hydrodynamics of vegetated channels. J Hydraul Res 50(3):262–279. doi:10.1080/00221686.2012.696559

    Article  Google Scholar 

  15. Hupp CR, Osterkamp WR (1996) Riparian vegetation and fluvial geomorphic processes. Geomorphology 14(4):277–295. doi:10.1016/0169-555X(95)00042-4

    Article  Google Scholar 

  16. Bardossy A, Caspary HJ (1990) Detection of climate change in Europe by analyzing european atmospheric circulation patterns from 1881 to 1989. Theor Appl Climatol 42(3):155–167. doi:10.1007/BF00866871

    Article  Google Scholar 

  17. Vreugdenhil SJ, Kramer K, Pelsma T (2006) Effects of flooding duration, -frequency and -depth on the presence of saplings of six woody species in north-west Europe. For Ecol Manag 236(1):47–55. doi:10.1016/j.foreco.2006.08.329

    Article  Google Scholar 

  18. Ward JV, Tockner K, Arscott DB, Claret C (2002) Riverine landscape diversity. Freshwater Biol 47(4):517–539. doi:10.1046/j.1365-2427.2002.00893.x

    Article  Google Scholar 

  19. Karrenberg S, Kollmann J, Edwards PJ, Gurnell AM, Petts GE (2003) Patterns in woody vegetation along the active zone of a near-natural Alpine river. Basic Appl Ecol 4(2):157–166. doi:10.1078/1439-1791-00123

    Article  Google Scholar 

  20. Asaeda T, Gomes PIA, Sakamoto K, Rashid MH (2011) Tree colonization trends on a sediment bar after a major flood. River Res Applic 27(8):976–984. doi:10.1002/rra.1372

    Article  Google Scholar 

  21. Mardhiah U, Rillig MC, Gurnell A (2015) Reconstructing the development of sampled sites on fluvial island surfaces of the Tagliamento River, Italy, from historical sources. Earth Surf Process Landf 40(5):629–641. doi:10.1002/esp.3658

    Article  Google Scholar 

  22. Gurnell A, Petts G (2006) Trees as riparian engineers: the Tagliamento river, Italy. Earth Surf Process Landf 31(12):1558–1574. doi:10.1002/esp.1342

    Article  Google Scholar 

  23. Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32:519–571. doi:10.1146/annurev.fluid.32.1.519

    Article  Google Scholar 

  24. Belcher SE, Harman IN, Finnigan JJ (2012) The wind in the willows: flows in forest canopies in complex terrain. Annu Rev Fluid Mech 44:479–504. doi:10.1146/annurev-fluid-120710-101036

    Article  Google Scholar 

  25. Gross G (1987) A numerical study of the air flow within and around a single tree. Bound.-Lay. Meteorol. 40(4):311–327. doi:10.1007/BF00116099

    Article  Google Scholar 

  26. Pietri L, Petroff A, Amielh M, Anselmet F (2009) Turbulence characteristics within sparse and dense canopies. Environ Fluid Mech 9:297–320. doi:10.1007/s10652-009-9131-x

    Article  Google Scholar 

  27. Bai K, Meneveau C, Katz J (2013) Experimental study of spectral energy fluxes in turbulence generated by a fractal, tree-like object. Phys Fluids 25:110810. doi:10.1063/1.4819351

    Article  Google Scholar 

  28. Bai K, Meneveau C, Katz J (2012) Near-wake turbulent flow structure and mixing length downstream of a fractal tree. Bound.-Lay. Meteorol. 143(2):285–308. doi:10.1007/s10546-012-9700-2

    Article  Google Scholar 

  29. Yagci O, Kabdasli MS (2008) The impact of single natural vegetation elements on flow characteristics. Hydrol Process 22(21):4310–4321. doi:10.1002/hyp.7018

    Article  Google Scholar 

  30. Yagci O, Tschiesche U, Kabdasli MS (2010) The role of different forms of natural riparian vegetation on turbulence and kinetic energy characteristics. Adv Water Resour 33(5):601–614. doi:10.1016/j.advwatres.2010.03.008

    Article  Google Scholar 

  31. Yagci O, Celik MF, Kitsikoudis V, Kirca VSO, Hodoglu C, Valyrakis M, Duran Z, Kaya S (2016) Scour patterns around individual vegetation elements. Adv Water Resour 97:251–265. doi:10.1016/j.advwatres.2016.10.002

    Article  Google Scholar 

  32. Takemura T, Tanaka N (2007) Flow structures and drag characteristics of a colony-type emergent roughness model mounted on a flat plate in uniform flow. Fluid Dyn Res 39(9–10):694–710. doi:10.1016/j.fluiddyn.2007.06.001

    Article  Google Scholar 

  33. Nicolle A, Eames I (2011) Numerical study of flow through and around a circular array of cylinders. J Fluid Mech 679:1–31. doi:10.1017/jfm.2011.77

    Article  Google Scholar 

  34. Zong L, Nepf H (2012) Vortex development behind a finite porous obstruction in a channel. J Fluid Mech 691:368–391. doi:10.1017/jfm.2011.479

    Article  Google Scholar 

  35. Chang K, Constantinescu G (2015) Numerical investigation of flow and turbulence structure through and around a circular array of rigid cylinders. J Fluid Mech 776:161–199. doi:10.1017/jfm.2015.321

    Article  Google Scholar 

  36. Sumer BM, Fredsoe J (2002) The mechanics of scour in the marine environment. Advanced series on ocean engineering, vol 17. World Scientific, Singapore

    Google Scholar 

  37. Toney C, Reeves MC (2009) Equations to convert compacted crown ratio to uncompacted crown ratio for trees in the interior west. West J Appl For 24(2):76–82

    Google Scholar 

  38. Monleon VJ, Azuma D, Gedney D (2004) Equations for predicting uncompacted crown ratio based on compacted crown ratio and tree attributes. West J Appl For 19(4):260–267

    Google Scholar 

  39. Randolph KC (2010) Equations relating compacted and uncompacted live crown ratio for common tree species in the south. South J Appl For 34(3):118–123

    Google Scholar 

  40. Lynch TB, Budhathoki C, Wittwer RF (2012) Relationships between height, diameter, and crown for eastern cottonwood (populus deltoides) in a Great Plains riparian ecosystem. West J Appl For 27(4):176–186. doi:10.5849/wjaf.11-030

    Article  Google Scholar 

  41. Goring DG, Nikora VI (2002) Despiking acoustic Doppler velocimeter data. J Hydraul Eng 128(1):117–126. doi:10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  42. Wahl TL (2003) Discussion of “Despiking acoustic doppler velocimeter data”. J Hydraul Eng 129(6):484–487. doi:10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  43. Mori N, Suzuki T, Kakuno S (2007) Noise of acoustic Doppler velocimeter data in bubbly flows. J. Eng. Mech. 133(1):122–125. doi:10.1061/(ASCE)0733-9399

    Article  Google Scholar 

  44. Pope S (2000) Turbulent flows. Cambridge University Press, New York

    Book  Google Scholar 

  45. Graf WH, Yulistiyanto B (1998) Experiments on flow around a cylinder; the velocity and vorticity fields. J Hydraul Res 36(4):637–654. doi:10.1080/00221689809498613

    Article  Google Scholar 

  46. Roulund A, Sumer BM, Fredsoe J, Michelsen J (2005) Numerical and experimental investigation of flow and scour around a circular pile. J Fluid Mech 534:351–401. doi:10.1017/S0022112005004507

    Article  Google Scholar 

  47. Unger J, Hager WH (2007) Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers. Exp Fluids 42(1):1–19. doi:10.1007/s00348-006-0209-7

    Article  Google Scholar 

  48. Tanaka N, Yagisawa J (2010) Flow structures and sedimentation characteristics around clump-type vegetation. J Hydro-Environ Res 4(1):15–25. doi:10.1016/j.jher.2009.11.002

    Article  Google Scholar 

  49. Valyrakis, M., Kitsikoudis, V., Yagci, O., Kirca, V.S.O., Koursari, E.: Experimental investigation of the modification of the flow field, past emergent aquatic vegetation elements. In: Proceedings of the 36th IAHR Congress. The Hague, The Netherlands (2015)

  50. Wallace JM (2016) Quadrant analysis in turbulence research: history and evolution. Annu Rev Fluid Mech 48:131–158. doi:10.1146/annurev-fluid-122414-034550

    Article  Google Scholar 

  51. Nelson JM, Shreve RL, McLean SR, Drake TG (1995) Role of near-bed turbulence structure in bed load transport and bed form mechanics. Water Resour Res 31(8):2071–2086. doi:10.1029/95WR00976

    Article  Google Scholar 

  52. Siniscalchi F, Nikora VI (2012) Flow-plant interactions in open-channel flows: a comparative analysis of five freshwater plant species. Water Resour Res 48(5):W05503. doi:10.1029/2011WR011557

    Article  Google Scholar 

  53. Strang G (2009) Introduction to linear algebra. Wellesley-Cambridge Press, Wellesley

    Google Scholar 

  54. Sumer BM, Fredsoe J (1997) Hydrodynamics around cylindrical structures. Advanced series on ocean engineering, vol 12. World Scientific, Singapore

    Google Scholar 

Download references

Acknowledgements

Vasileios Kitsikoudis gratefully acknowledges the financial support for conducting post-doctoral research in Istanbul Technical University, initially from Anastasios Anastasiadis foundation (grant number 63310/25-09-2013) and afterwards from the Scientific and Technological Research Council of Turkey (TUBITAK)—Fellowship Program 2216 (Ref. No. 21514107-115.02-45898). The authors would like to thank the Editor in Chief for handling the manuscript and two anonymous Reviewers, whose insightful comments and constructive suggestions improved the technical content and presentation of the paper. Finally, thanks go to ITU Hydraulics Laboratory technicians Mevlut Ulucinar, Hasan Yalcin, and Yasar Aktas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Kitsikoudis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitsikoudis, V., Yagci, O., Kirca, V.S.O. et al. Experimental investigation of channel flow through idealized isolated tree-like vegetation. Environ Fluid Mech 16, 1283–1308 (2016). https://doi.org/10.1007/s10652-016-9487-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-016-9487-7

Keywords

Navigation