Skip to main content
Log in

Advent of sheet flow in suction affected alluvial channels

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The presence of suction (flow of water from channel to ground water) affects the channel hydrodynamics and increases the bed shear stress. At high bed shear stress in alluvial channels made of the non-cohesive material, sediment transport occurs as sheet flow layer of high sediment concentration. The sediment transport in the form of sheet flow has been observed in the present study when suction was applied to the non-transporting channels designed on incipient motion condition. The erosion of the channel banks contributed to the sheet flow because of the increased channel bed shear stress. An empirical relation for the thickness of sheet flow layer has been developed which includes suction as independent parameter along with others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

σ g :

Gradation coefficient

d 50 :

Median particle diameter

ϕ degree:

Angle of repose (dry)

Q 0 :

Main channel discharge

q s :

Seepage discharge

y :

Flow depth of the channel

u :

Mean flow velocity

B :

Top width of the channel

S 0 :

Bed slope

S fs :

Friction slope of spatially varied flow

A :

Cross-sectional area of channel

θ c :

Critical Shields parameter

R*:

Shear Reynolds number

S w :

Water surface slope

u* :

Shear velocity

u s :

Average velocity of flow with seepage

Q s :

Average discharge with seepage

q s :

Seepage discharge over the reach length L

X :

Distance from the tail gate

F 0 and F s :

Froude number with no seepage and seepage condition

R hs :

Hydraulic radius with seepage

p s :

Wetted perimeter with seepage

S ws :

Water surface slope with seepage

V s :

Seepage velocity through the sand bed of length L

τ s :

Bed shear stress for seepage experiment

τ bs and τ cs :

Bed shear stress and critical shear stress under seepage condition

S fo :

Friction slope under no seepage conditions

τ 0 :

Bed shear stress under no seepage conditions

R h0 :

Hydraulic radius under no seepage conditions

A 0 :

Cross-sectional under no seepage conditions

p 0 :

Wetted perimeter under no seepage conditions

θ :

Shields parameter

N :

Seepage intensity parameter

M :

Parameter in Eq. (2.17)

τ c0 and τ cs :

Critical shear stress under no seepage and seepage condition

y 0 and y s :

Depth of flow under no seepage and seepage condition

u 0 and u s :

Mean velocity under no seepage and Seepage condition

β :

Channel shape parameter

x :

Lateral horizontal distance from the center of the channel

Δ:

Thickness of the sheet flow layer

ρ S :

Dry density of the sediments

ρ :

Density of the fluid

δ :

Dimensionless sheet thickness

γ s and γ :

Specific weight of sediment particles and water

ν :

Kinematic viscosity of water

References

  1. Ahmed ASM, Sato S (2003) A sheetflow transport model for asymmetric oscillatory flows: part I: uniform grain size sediments. Coast Eng (JSCE) 45(3):321–337

    Article  Google Scholar 

  2. Asano T (1992) Observations of granular–fluid mixture under an oscillatory sheetflow. Coast Eng Proc 1(23):1896–1909

    Google Scholar 

  3. Berenbrock, C. (1999) Streamflow gains and losses in the Lower Boise River Basin, Idaho, 1996–1997. U.S. Geological Survey Water-Resources Investigations Report 99–4105

  4. Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37(1):1–33

    Article  Google Scholar 

  5. Camenen B, Bayram A, Larson M (2006) Equivalent roughness height for plane bed under steady flow. J Hydraul Eng 132(11):1146–1158

    Article  Google Scholar 

  6. Cao D, Chiew YM (2013) Suction effects on sediment transport in closed conduit flows. J Hydraul Eng doi:10.1061/(ASCE)HY.1943-7900.0000833, in press

  7. Cao S, Knight DW (1998) Design for hydraulic geometry of alluvial channels. J Hydraul Eng 120(5):484–492

    Article  Google Scholar 

  8. Carlson RA, Petrich CR (1999) New York Canal geologic cross-section, seepage gain/loss data, and ground water hydrographs: compilation and interim findings. Treasure Valley Hydrologic Project Open File Report

  9. Chen X, Chiew YM (2004) Velocity distribution of turbulent open-channel flow with bed suction. J Hydraul Eng 130(2):140–148

    Article  Google Scholar 

  10. Cheng NS (1997) Seepage effect on open-channel flow and incipient sediment motion. PhD Thesis, Nanyang Technological University, Singapore

  11. Cheng NS, Chiew YM (1998) Turbulent open-channel flow with upward seepage. J Hydraul Res 36(3):415–431

    Article  Google Scholar 

  12. Cheng NS, Chiew YM (1998) Modified logarithmic law for velocity distribution subjected to upward seepage. J Hydraul Eng 124(12):1235–1241

    Article  Google Scholar 

  13. Cheng NS, Chiew YM (1999) Incipient sediment motion with upward seepage. J Hydraul Res 37(5):665–681

    Article  Google Scholar 

  14. Conley DC, Inman DL (1992) Field observations of the fluid-granular boundary layer under near-breaking waves. J Geophys Res 97(C6):9631–9643

    Article  Google Scholar 

  15. Deng ZQ, Singh VP, Bengtsson L (2001) Longitudinal dispersion coefficient in straight rivers. J Hydraul Eng 127(11):919–927

    Article  Google Scholar 

  16. Dey S, Nath TK (2010) Turbulence characteristics in flows subjected to boundary injection and suction. J Eng Mech 136(7):877–888

    Article  Google Scholar 

  17. Dey S, Sarkar S, Ballio F (2011) Double-averaging turbulence characteristics in seeping rough-bed streams. J Geophys Res 116:F03020. doi:10.1029/2010JF001832

    Google Scholar 

  18. Diplas P (1990) Characteristics of self-formed straight channels. J Hydraul Eng 116(5):707–728

    Article  Google Scholar 

  19. Diplas P, Vigilar G (1992) Hydraulic geometry of threshold channels. J Hydraul Eng 118(4):597–614

    Article  Google Scholar 

  20. Dohmen-Janssen CM (1999) Grain size influence on sediment transport in oscillatory sheet flow: Phase lags and mobile bed effects. PhD Thesis, Delft Univ. of Technology

  21. Dohmen-Janssen CM, Hassan WN, Ribberink JS (2001) Mobile-bed effects in oscillatory sheet flow. J Geophys Res 106(C11):27103–27115

    Article  Google Scholar 

  22. Dohmen-Janssen CM, Kroekenstoel DF, Hassan WN, Ribberink JS (2002) Phase lags in oscillatory sheet flow: experiments and bed load modeling. Coast Eng 46(1):61–87

    Article  Google Scholar 

  23. Dong LP, Sato S, Liu H (2013) A sheetflow sediment transport model for skewed-asymmetric waves combined with strong opposite currents. Coast Eng 71:87–101

    Article  Google Scholar 

  24. Dukker P, Bhutta MN, Roos P, Javed I (1994) Seepage Losses from Lower Gugera Branch Canal, Punjab, Pakistan, vol 134. IWASRI Publication, Lahore, pp 24–25

    Google Scholar 

  25. Flores NZ, Sleath JFA (1998) Mobile layer in oscillatory sheet flow. J Geophys Res 103(C6):12783–12793

    Article  Google Scholar 

  26. Francalanci S, Parker G, Solari L (2008) Effect of seepage-induced nonhydrostatic pressure distribution on bed-load transport and bed morphodynamics. J Hydraul Eng 134(4):378–389

    Article  Google Scholar 

  27. Gotoh H, Sakai T (1997) Numerical simulation of sheetflow as granular material. J Waterw, Port, Coast Ocean Eng 123(6):329–336

    Article  Google Scholar 

  28. Griffiths GA (1983) Stable-channel design in alluvial rivers. J Hydrol 65(4):259–270

    Article  Google Scholar 

  29. Hey R, Thorne C (1986) Stable channels with mobile gravel beds. J Hydraul Eng 112(8):671–689

    Article  Google Scholar 

  30. Hsu TJ, Jenkins JT, Liu PLF (2004) On two-phase sediment transport: sheet flow of massive particles. Proc R Soc Lond A 460(2048):2223–2250

    Article  Google Scholar 

  31. Jenkins JT, Hanes DM (1998) Collisional sheet flows of sediment driven by a turbulent fluid. J Fluid Mech 370:29–52

    Article  Google Scholar 

  32. Jones JB, Mulholland PJ (eds) (2000) Streams and groundwaters. Academic, San Diego

    Google Scholar 

  33. Karambas TV (2003) Modelling of infiltration-exfiltration effects of cross shore sediment transport in the swash zone. Coast Eng J 45(1):63–82

    Article  Google Scholar 

  34. King DB (1991) Studies in oscillatory flow bedload sediment transport, Ph.D. Thesis, Univ. of California, San Diego, La Jolla

  35. Krishnamurthy K, Rao SM (1969) Theory and experiment in canal seepage estimation using radioisotoes. J Hydrol 9:277–293

    Article  Google Scholar 

  36. Krogstad P-Å, Kourakine A (2000) Some effects of localized injection on the turbulence structure in a boundary layer. Phys Fluids 12(11):2990–2999

    Article  Google Scholar 

  37. Lanckriet T, Puleo J, Masselink JG, Turner I, Conley D, Blenkinsopp C, Russell P (2014) Comprehensive field study of swash-zone processes. II: sheet flow sediment concentrations during quasi-steady backwash. J Waterw, Port, Coast Ocean Eng 140(1):29–42

    Article  Google Scholar 

  38. Lane EW (1953) Progress report on studies on the design of stable channels by the bureau of reclamation. Proceedings, ASCE, 79, Separate 280, 1–31

  39. Lane EW (1949) The stable channel problem for coarse material. Hydraulic Laboratory Report, USBR, HYD 292

  40. Lu Y, Chiew YM (2007) Seepage effects on dune dimensions. J Hydraul Eng 133(5):560–563

    Article  Google Scholar 

  41. Lu Y, Chiew YM, Cheng NS (2008) Review of seepage effects on turbulent open-channel flow and sediment entrainment. J Hydraul Res 46(4):476–488

    Article  Google Scholar 

  42. Maclean AG (1991) Open channel velocity profiles over a zone of rapid infiltration. J Hydraul Res 29(1):15–27

    Article  Google Scholar 

  43. Maclean AG (1991) Bed shear stress and scour over bed-type river intake. J Hydraul Eng 117(4):436–451

    Article  Google Scholar 

  44. Maclean AG, Willetts BB (1986) Measurement of boundary shear stress in non-uniform open channel flow. J Hydraul Res 24(1):39–51

    Article  Google Scholar 

  45. Mahmood K, Haque MI, Choudri AM (1988) Mechanics of alluvial channels. Water Resources Publications, Littleton

    Google Scholar 

  46. Malarkey J, Davies AG, Li Z (2003) A simple model of unsteady sheet-flow sediment transport. Coast Eng 48(3):171–188

    Article  Google Scholar 

  47. Marsh NA, Western AW, Grayson RB (2004) Comparison of methods for predicting incipient motion for sand beds. J Hydraul Eng 130(7):616–621

    Article  Google Scholar 

  48. Millar R, Quick M (1993) Effect of bank stability on geometry of gravel rivers. J Hydraul Eng 119(12):1343–1363

    Article  Google Scholar 

  49. Myrhaug D, Holmedal LE (2007) Mobile layer thickness in sheet flow beneath random waves. Coast Eng 54(8):577–585

    Article  Google Scholar 

  50. O’Donoghue T, Wright S (2004) Concentrations in oscillatory sheet flow for well sorted and graded sands. Coast Eng 50(3):117–138

    Article  Google Scholar 

  51. Oldenziel DM, Brink WE (1974) Influence of suction and blowing on entrainment of sand particles. J Hydraul Div 100(HY7):935–949

    Google Scholar 

  52. Parker G (1978) Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river. J Fluid Mech 89(1):127–146

    Article  Google Scholar 

  53. Pizzuto JE (1990) Numerical simulation of gravel river widening. Water Resour Res 26(9):1971–1980

    Article  Google Scholar 

  54. Prinos P (1995) Bed-suction effects on structure of turbulent open-channel flow. J Hydraul Eng 121(5):404–412

    Article  Google Scholar 

  55. Raja RK, Kumar A, Chhabra SS (1983) Estimation of seepage losses from an unlined channel- a field study by nuclear techniques, proceeding, Volume II—Hydraulics, CBIP, Fiftieth annual research and development session. Simla, Himachala Pradesh

  56. Rao AR, Sreenivasulu G (2009) Design of plane sand-bed channels affected by seepage. Periodi Polytech, Civil Eng 53(2):81–92

    Article  Google Scholar 

  57. Rao AR, Sreenivasulu G, Kumar B (2011) Geometry of sand-bed channels with seepage. Geomorphology 128(3–4):171–177

    Article  Google Scholar 

  58. Rao AR, Nagaraj S (1999) Stability and mobility of sand-bed channels affected by seepage. J Irrig Drain Eng 125(6):370–379

    Article  Google Scholar 

  59. Revil-Baudard T, Chauchat J (2013) A two-phase model for sheet flow regime based on dense granular flow rheology. J Geophys Res 118(2):619–634

    Article  Google Scholar 

  60. Ribberink JS, Al-Salem AA (1994) Sediment transport in oscillatory boundary layers in cases of rippled beds and sheet flow. J Geophys Res 99(C6):12707–12727

    Article  Google Scholar 

  61. Richardson CP, Abt SR, Richardson EV (1985) Inflow seepage influence on straight alluvial channels. J Hydraul Eng, ASCE 111(8):1133–1147

    Article  Google Scholar 

  62. Rosgen D (2006) The natural channel design method for river restoration. World Environmental and Water Resource Congress, 1–12

  63. Savenije HHG (2003) The width of a bankfull channel; Lacey’s formula explained. J Hydrol 276(1–4):176–183

    Article  Google Scholar 

  64. Sharma HD, Chawla AS (1975) Manual of canal lining. Technical Report No.l4. Central Board of Irrigation and Power, New Delhi

  65. Sreenivasulu G, Kumar B, Rao ARK (2011) Variation of stream power with seepage in sand-bed channels. Water SA 37(1):115–120

    Article  Google Scholar 

  66. Sreenivasulu G, Rao ARK, Kumar B, Tripathi S (2010) Analysis of gradually and spatially varied flow in sand-bed channels. J Hydraul Res 48(2):274–279

    Article  Google Scholar 

  67. Sumer BM, Kozakiewicz A, Fredsoe J, Deigaard R (1996) Velocity and concentration profiles in sheet-flow layer of movable bed. J Hydraul Eng 122(10):549–558

    Article  Google Scholar 

  68. Turner IL (1995) Simulating the influence of groundwater seepage on sediment transport by the sweep of the swash zone across macro-tidal beaches. Mar Geol 15(1–2):153–174

    Article  Google Scholar 

  69. Van Rijn L (1993) Principles of sediment transport in rivers, estuaries, and coastal seas. Aqua, Amsterdam

    Google Scholar 

  70. Watters GZ, Rao MVP (1971) Hydrodynamic effects of seepage on bed particles. J Hydraul Div 101(3):421–439

    Google Scholar 

  71. Weller JA, McAteer P (1993) Seepage measurement techniques and accuracy. In: Proceedings of the workshop on canal lining and seepage, Lahore, pp. 171–196

  72. Willetts BB, Drossos ME (1975) Local erosion caused by rapid forced infiltration. J Hydraul Div 101(12):1477–1488

    Google Scholar 

  73. Wilson KC (1966) Bed-load transport at high shear stress. In: Proceedings A.S.C.E, vol. HY6, ASCE

  74. Wilson KC (1987) Analysis of bed-load motion at high shear stress. J Hydraul Eng 113:97–103

    Article  Google Scholar 

  75. Wilson KC (1989) Friction of wave-induced sheet flow. Coast Eng 12(4):371–379

    Article  Google Scholar 

  76. Wobus CW, Kean JW, Tucker CE, Anderson RS (2008) Modeling the evolution of channel shape: balancing computational efficiency with hydraulic fidelity. J Geopphys Res 113:F02004. doi:10.1029/2007JF000914

    Google Scholar 

  77. Yalin MS (1976) Mechanics of sediment transport. Pergamon, Oxford

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support that was received from the Department of Science and Technology, Govt. of India (SERC-DST: SR/S3/MERC/005/2010) to carry out the research work presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimlesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshpande, V., Kumar, B. Advent of sheet flow in suction affected alluvial channels. Environ Fluid Mech 16, 25–44 (2016). https://doi.org/10.1007/s10652-015-9409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-015-9409-0

Keywords

Navigation