Skip to main content

Advertisement

Log in

Tests for aggregated dispersion: Van Valen’s test and a new competitor

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

Van Valen’s test is usually applied as a two sample test for equality of dispersion for multivariate data. Motivated by a comment of Manly (Van Valen’s test. Encyclopedia of Statistical Sciences, 2006) that “Little is known about the properties of Van Valen’s test” we develop an alternative test and compare the Van Valen test with our alternative robust test in an extensive simulation study. We find that Van Valen’s test does not actually test for equality of variance sums; however, for that null hypothesis it still performs well in terms of closeness to the nominal significance level. Due to testing the correct null hypothesis and the excellent adherence to the nominal significance level, we recommend the use of the robust test as a permutation test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson TW (2003) An introduction to multivariate analysis, 3rd edn. Wiley, New York

    Google Scholar 

  • Bumpus HC (1898) The elimination of the unfit as illustrated by the introduced sparrow, passer domesticus. In: Biological Lectures. Marine Biology Laboratory, Woods Hole, pp 209–226

  • Chung E, Romano JP (2016) Multivariate and multiple permutation tests. J Econ 193(1):76–91

    Article  Google Scholar 

  • Harris P (1985) Testing for variance homogeneity of correlated variables. Biometrika 72(1):103–107

    Article  Google Scholar 

  • Joarder A, Singh S (2001) Estimation of the trace of the scaled covariance matrix of a multivariate t-model using a known information. Metrika 54:53–58

    Article  Google Scholar 

  • Manly BFJ (2005) Multivariate statistical methods: a primer, 3rd edn. Chapman and Hall, London

    Google Scholar 

  • Manly BFJ (2006) Van Valen’s test. Encyclopedia of Statistical Sciences

  • Satterthwaite F (1941) Synthesis of variance. Psychometrika 6(5):309–316

    Article  Google Scholar 

  • Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biometrics Bull 2(6):110–114

    Article  CAS  Google Scholar 

  • Seber GAF (1984) Multivariate observations. Wiley, New York

    Book  Google Scholar 

  • Stuart A, Ord K (1994) Kendall’s advanced theory of statistics, distribution theory, vol 1, 6th edn. Holder Arnold, London

    Google Scholar 

  • Van Valen L (1974) Multivariate structural statistics in natural history. J Theoret Biol 45(1):235–247

    Article  Google Scholar 

  • Van Valen L (1978) The statistics of variation. Evolut Theory 4:33–43

    Google Scholar 

Download references

Acknowledgements

The authors thank the extraordinary efforts of the reviewer whose comments and feedback have greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen Livingston Jr.

Additional information

Handling Editor: Luiz Duczmal.

Appendix: Sum of squares of the robust test statistic

Appendix: Sum of squares of the robust test statistic

The robust analogue is based on the variable sample variances \( S^2_{jk} = \frac{\sum _{i=1}^{n_j} \left( X_{ijk} - {\bar{X}}_{\bullet jk} \right) ^2 }{n_j - 1} \) and in particular on the sum of these, \(\sum _{k=1}^{p} S^2_{jk}\). It is important here to not confuse \(S_j^2\) and \(S_{jk}^2\). The numerator in the robust analogue is the square of \(\sum _{k=1}^{p} S^2_{1k} - \sum _{k=1}^{p} S^2_{2k}\). Now

$$\begin{aligned} \sum _{k=1}^{p} S^2_{jk} = \frac{\sum _{i=1}^{n_j} \left( X_{ijk} - {\bar{X}}_{\bullet jk} \right) ^2 }{n_j - 1} = \frac{\sum _{i=1}^{n_j} D_{ij}}{n_j - 1} = \frac{n_j {\bar{D}}_j}{n_j - 1}, \end{aligned}$$

and hence

$$\begin{aligned} \sum _{k=1}^{p} S^2_{1k} - \sum _{k=1}^{p} S^2_{2k} = \frac{n_1 {\bar{D}}_1}{n_1 - 1} - \frac{n_2 {\bar{D}}_2}{n_2 - 1}. \end{aligned}$$

The denominator of the robust analogue is equivalent to \( {\varvec{1}}_p^T \hat{\varvec{\varOmega }}_1 {\varvec{1}}_p + {\varvec{1}}_p^T \hat{\varvec{\varOmega }}_2 {\varvec{1}}_p\) with

$$\begin{aligned} {n_j} {\varvec{1}}_p^T \hat{\varvec{\varOmega }}_j {\varvec{1}}_p = \sum _{k}^{p} \sum _{l}^{p} \left( m^{22}_{jkl} - m^{20}_{jkl} m^{02}_{jkl}\right) , \end{aligned}$$

where, as before, \( {n_j} m^{rs}_{jkl} = \sum _{i=1}^{n_j} \left( X_{ijk} - {\bar{X}}_{\bullet jk} \right) ^r \left( X_{ijl} - {\bar{X}}_{\bullet jl} \right) ^s \). We seek to express these in terms of \(D_{ij}\). Now \(\sum _{i=1}^{n_j} \left( D_{ij} - {\bar{D}}_{ij}\right) ^2 = \sum _{i=1}^{n_j} D_{ij}^2 - n_j {\bar{D}}_j^2\). First

$$\begin{aligned} \sum _{i=1}^{n_j} D_{ij}^2&= \sum _{i=1}^{n_j} \left[ \sum _{k=1}^{p} \left( X_{ijk} - {\bar{X}}_{\bullet jk} \right) ^2 \right] ^2 \\&= \sum _{i=1}^{n_j} \sum _{k=1}^{p} \sum _{l=1}^{p} \left( X_{ijk} - {\bar{X}}_{\bullet jk} \right) ^2 \left( X_{ijl} - {\bar{X}}_{\bullet jk} \right) ^2 \\&= \sum _{k=1}^{p} \sum _{l=1}^{p} n_j m_{jkl}^{22}. \end{aligned}$$

Next,

$$\begin{aligned} n_j^2 {\bar{D}}^2_j = \left[ \sum _{i=1}^{n_j} D_ij \right] ^2&= \sum _{i=1}^{n_j} \sum _{u=1}^{n_j} D_{ij} D_{uj} \\&= \sum _{i=1}^{n_j} \sum _{u=1}^{n_j} \left[ \sum _{k=1}^{p} \left( X_{ijk} - {\bar{X}}_{\bullet jk} \right) ^2 \right] \left[ \sum _{l=1}^{p} \left( X_{ujl} - {\bar{X}}_{\bullet jl} \right) ^2 \right] \\&= \sum _{i=1}^{n_j} \sum _{u=1}^{n_j} \sum _{k=1}^{p} \sum _{l=1}^{p} \left( X_{ijk} - {\bar{X}}_{\bullet jk} \right) ^2 \left( X_{ujl} - {\bar{X}}_{\bullet jl} \right) ^2 \\&= \sum _{k=1}^{p} \sum _{l=1}^{p} \left[ \sum _{i=1}^{n_j} \left( X_{ijk} - {\bar{X}}_{\bullet jk} \right) ^2 \right] \left[ \sum _{u=1}^{n_j} \left( X_{ujl} - {\bar{X}}_{\bullet jl} \right) ^2 \right] \\&= n_j^2 \sum _{k=1}^{p} \sum _{l=1}^{p} m_{jk}^{20} m_{jl}^{02}. \end{aligned}$$

Therefore

$$\begin{aligned} \sum _{i=1}^{n_j} \left( D_{ij} - {\bar{D}}_j\right) ^2&= n_j \sum _{k=1}^{p} \sum _{l=1}^{p} \left( m_{jkl}^{22} - m_{jk}^{20} m_{jl}^{02} \right) \\&= {n_j}^2 {\varvec{1}}_p^T \hat{\varvec{\varOmega }}_j {\varvec{1}}_p \end{aligned}$$

and \(S_j^2 = \frac{n_j^2 {\varvec{1}}_p^T \hat{\varvec{\Omega }}_j {\varvec{1}}_p }{n_j - 1}\), so \( {\varvec{1}}_p^T \hat{\varvec{\varOmega }}_j {\varvec{1}}_p = \frac{\left( n_j - 1\right) S_j^2}{n_j^2}\). Thus the denominator in the robust analogue is \( {\varvec{1}}_p^T \hat{\varvec{\varOmega }}_1 {\varvec{1}}_p + {\varvec{1}}_p^T \hat{\varvec{\varOmega }}_2 {\varvec{1}}_p = \frac{\left( n_1 - 1\right) S_1^2}{n_1^2} + \frac{\left( n_2 - 1\right) S_2^2}{n_2^2}\). Combining these the robust analogue is

$$\begin{aligned} T^2_{\text {R}} = \frac{\left[ \frac{n_1 {\bar{D}}_1}{n_1 - 1} - \frac{n_2 {\bar{D}}_2}{n_2 - 1}\right] ^2}{\frac{\left( n_1 - 1\right) S_1^2}{n_1^2} + \frac{\left( n_2 - 1\right) S_2^2}{n_2^2}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Livingston, G., Allingham, D. & Rayner, J.C.W. Tests for aggregated dispersion: Van Valen’s test and a new competitor. Environ Ecol Stat 29, 223–239 (2022). https://doi.org/10.1007/s10651-021-00517-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-021-00517-0

Keywords

Navigation