We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Lethal toxicity of the herbicides acetochlor, ametryn, glyphosate and metribuzin to tropical frog larvae

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Despite the high amphibian biodiversity and increasing pesticide use in tropical countries, knowledge on the sensitivity of tropical amphibians to pesticides remains limited. The aim of this study was to evaluate the acute toxicity of the active ingredients of four of the main herbicides used in Brazilian sugarcane production to tadpoles of two tropical frog species: Physalaemus cuvieri and Hypsiboas pardalis. The calculated 96 h-LC50 (median lethal concentration; in mg a.s./L) values for P. cuvieri and H. pardalis were 4.4 and 7.8 (acetochlor); 15 and <10 (ametryn); 115 and 106 (glyphosate); and 85 and 68 (metribuzin), respectively. These toxicity values demonstrated little interspecies variation and the toxicity of the herbicides appeared to be at least partly related with the respective octanol-water coefficient. Published acute toxicity data of fish and amphibians for herbicides were also compiled from the US-EPA ECOTOX database. These data indicated little difference in herbicide sensitivity between tropical amphibians and both non-tropical amphibians and fish. These findings indicate that temperate (fish and amphibian) herbicide toxicity data are also protective for tropical amphibians. Constraints in such extrapolations and indications for future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Albuquerque AF, Ribeiro JS, Kummrow F, Nogueira AJA, Montagner CC, Umbuzeiro GA (2016) Pesticides in Brazilian freshwaters: a critical review. Environ Sci Process Impacts 18:779–787

    Article  CAS  Google Scholar 

  • Aldenberg T, Jaworska JS (2000) Uncertainty of hazardous concentrations and fraction affected for normal species sensitivity distributions. Ecotoxicol Environ Safe 46:1–18

    Article  CAS  Google Scholar 

  • Alza CM, Donnelly MA, Whitfield SM (2016) Additive effects of mean temperature, temperature variability, and chlorothalonil to red-eyed treefrog (Agalychnis callidryas) larvae. Environ Toxicol Chem 35:2998–3004

    Article  CAS  Google Scholar 

  • Araújo CVM, Shinn C, Moreira-Santos M, Lopes I, Espíndola ELG, Ribeiro R (2014) Copper-driven avoidance and mortality in temperate and tropical tadpoles. Aquat Toxicol 146:70–75

    Article  CAS  Google Scholar 

  • Armas ED, Monteiro RTR, Amâncio AV, Correia RML, Guercio MA (2005) Uso de agrotóxico em cana-de-açúcar na bacia de Rio Corumbataí e o risco de poluição hídrica. Quím Nova 28:975–982

    Article  Google Scholar 

  • ASTM (2013) Standard guide for conducting the frog embryo teratogenesis assay—Xenopus (FETAX). ASTM E1439-12, American Society for Testing and Materials

  • Attademo AM, Lajmanovich RC, Peltzer PM, Junges CM (2016) Acute toxicity of metaldehyde in the invasive rice snail Pomacea canaliculata and sublethal effects on tadpoles of a non-target species (Rhinella arenarum). Water Air Soil Pollut 227:400

    Article  CAS  Google Scholar 

  • Babini MS, Bionda CL, Salinas ZA, Salas NE, Martino AL (2018) Reproductive endpoints of Rhinella arenarum (Anura, Bufonidae): populations that persist in agroecosystems and their use for the environmental health assessment. Ecotoxicol Environ Safe 154:294–301

    Article  CAS  Google Scholar 

  • Bach NC, Marino DJG, Natale GS, Somoza GM (2018) Effects of glyphosate and its commercial formulation, Roundup® Ultramax, on liver histology of tadpoles of the neotropical frog, Leptodactylus latrans (amphibia: Anura). Chemosphere 202:289–297

    Article  CAS  Google Scholar 

  • Baird DJ, Barber I, Bradley M, Calow P, Soares AMVM (1989) The Daphnia bioassay: a critique. Hydrobiologia 188(189):403–406

    Article  Google Scholar 

  • Bantle JA, Dumont JN, Finch R, Linder G (1991) Atlas of abnormalities: a guide for the performance of FETAX. Oklahoma State University, Stillwater, USA

  • Bionda CL, Babini S, Martino AL, Salas NE, Lajmanovich RC (2019) Impact assessment of agriculture and livestock over age, longevity and growth of populations of common toad Rhinella arenarum (anura: Bufonidae), central area of Argentina. Glob Ecol Conserv 14:e00398

    Article  Google Scholar 

  • Brock TCM, Maltby L, Hickey CH, Chapman J, Solomon KR (2008) Spatial extrapolation in ecological effect management of chemicals. In: Solomon KR, Brock TCM, De Zwart D, Dyer SD, Posthuma L, Richards SM, Sanderson H, Sibley PK, Van den Brink PJ (eds) Extrapolation practice for ecotoxicological effect characterization of chemicals. SETAC Europe Press, Brussels, pp 223–256

  • CANASAT (2018) Monitoramento da cana-de-açúcar via imagens de satélite. http://www.dsr.inpe.br/laf/canasat/. Accessed 10 Nov 2018

  • Daam MA, Leitão S, Cerejeira MJ, Sousa JP (2011) Comparing the sensitivity of soil invertebrates to pesticides with that of Eisenia fetida. Chemosphere 85:1040–1047

    Article  CAS  Google Scholar 

  • Davidson C, Shaffer HB, Jennings M (2002) Spatial tests of the pesticide drift, habitat destruction, UV-B and climate change hypotheses for California amphibian declines. Conserv Biol 16:1588–1601

    Article  Google Scholar 

  • EFSA (2013) Guidance on tiered risk assessment for plant protection products for aquatic organisms in the edge-of-field surface waters. EFSA J 11:3290

    Google Scholar 

  • EFSA (2018) Scientific Opinion on the state of the science on pesticide risk assessment for amphibians and reptiles. EFSA J 16:5125

    Google Scholar 

  • Egea-Serrano A, Solé M (2017) Effects of insecticides on a phytotelmata-breeding amphibian. Environ Toxicol Chem 36:422–428

    Article  CAS  Google Scholar 

  • EPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. 5th edn. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Fryday S, Thompson H (2012) Toxicity of pesticides to aquatic and terrestrial life stages of amphibians and occurrence, habitat use and exposure of amphibian species in agricultural environments. Supporting Publications 2012:EN-343, EFSA (European Food Safety Authority), Parma, Italy

  • Ghose SL, Donnelly MA, Kerby J, Whitfield SM (2014) Acute toxicity tests and meta-analysis identify gaps in tropical ecotoxicology for amphibians. Environ Toxicol Chem 33:2114–2119

    Article  CAS  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Hamilton MA, Russi RC, Thurston RV (1977) Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Hayes TB, Falso P, Gallipeau S, Stice M (2010) The cause of global amphibian declines: a developmental endocrinologist’s perspective. J Exp Biol 213:921–933

    Article  CAS  Google Scholar 

  • He H, Chen G, Yu J, He J, Huang X, Li S, Guo Q, Yu T, Li H (2013) Individual and joint toxicity of three chloroacetanilide herbicides to freshwater cladoceran Daphnia carinata. Bull Environ Contam Toxicol 90:344–350

    Article  CAS  Google Scholar 

  • Hostovsky M, Blahova J, Plhalova L, Kopriva V, Svobodova Z (2014) Effects of the exposure of fish to triazine herbicides. Neuro Endocrinol Lett 35(Suppl 2):3–25

    CAS  Google Scholar 

  • IBAMA—Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (2014) Relatórios de Comercialização de Agrotóxicos—Boletim Anual de Produção, Importação, Exportação e Vendas de Agrotóxicos no Brasil, Boletim 2013. https://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos

  • IUCN (2017) IUCN Red list of threatened species, v 2017. 3. International Union for Conservation of Nature, Gland, Switzerland. http://www.iucnredlist.org. Accessed 8 Nov 2018

  • Jiquiriçá PRI (2010) Lethal and sublethal effects of nitrogen pollution on anuran larvae. M.Sc. thesis, University of São Paulo, Brazil

  • Kerby JL, Richards-Hrdlicka KL, Storfer A, Skelly DK (2010) An examination of amphibian sensitivity to environmental contaminants: are amphibians poor canaries? Ecol Lett 13:60–67

    Article  Google Scholar 

  • Kerby JL, Whitfield SM, Ghose SL, Donnelly MA (2015) Letters to the editor. Environ Toxicol Chem 34:4–5

    Article  CAS  Google Scholar 

  • Lau ETC, Yung MMN, Karraker NE, Leung KMY (2014) Is an assessment factor of 10 appropriate to account for the variation in chemical toxicity to freshwater ectotherms under different thermal conditions? Environ Sci Pollut Res 21:95–104

    Article  CAS  Google Scholar 

  • Lajmanovich RC, Attademo AM, Peltzer PM, Junges CM, Cabagna MC (2011) Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (Anura: Bufonidae) tadpoles: B-esterases and Glutathione S-transferase inhibitors. Arch Environ Contam Toxicol 60:681–689

    Article  CAS  Google Scholar 

  • Lajmanovich RC, Peltzer PM, Martinuzzi CS, Attademo AM, Basso A, Colussi CL (2019) Insecticide pyriproxyfen (Dragón®) damage biotransformation, thyroid hormones, heart rate, and swimming performance of Odontophrynus americanus tadpoles. Chemosphere 220:714–722

    Article  CAS  Google Scholar 

  • Lewis SE, Silburn DM, Kookana RS, Shaw M (2016) Pesticide behavior, fate, and effects in the tropics: an overview of the current state of knowledge. J Agric Food Chem 64:3917–3924

    Article  CAS  Google Scholar 

  • Maltby L, Brock TCM, Van den Brink PJ (2009) Fungicide risk assessment for aquatic ecosystems: importance of interspecific variation, toxic mode of action, and exposure regime. Environ Sci Technol 43:7556–7563

    Article  CAS  Google Scholar 

  • Mann RM, Bidwell JR (1999) The toxicity of glyphosate and several glyphosate formulations to four species of southwestern Australian frogs. Arch Environ Contam Toxicol 36:193–199

    Article  CAS  Google Scholar 

  • Mann RM, Bidwell JR, Tyler MJ (2003) Toxicity of herbicide formulations to frogs and the implications for product registration: a case study from Western Australia. Appl Herbitol 1:13–22

    Article  Google Scholar 

  • Méndez M, Obando P, Pinnock-Branford M, Ruepert C, Castillo LE, Mena F, Alvarado G (2016) Acute, chronic and biochemical effects of chlorothalonil on Agalychnis callidryas, Isthmohyla pseudopuma and Smilisca baudinii tadpoles. Environ Sci Pollut Res 23:21238–21248

    Article  CAS  Google Scholar 

  • Moura MAM, Oliveira R, Jonsson CM, Domingues I, AMVM Soares, AJA Nogueira (2018) The sugarcane herbicide ametryn induces oxidative stress and developmental abnormalities in zebrafish embryos. Environ Sci Pollut Res 25:13416–13425

    Article  CAS  Google Scholar 

  • OECD (2015) Test No. 241: the larval amphibian growth and development assay (LAGDA). Organisation for Economic Cooperation and Development, Paris

  • Ortiz-Santaliestra ME, Maia JP, Egea-Serrano A, Lopes I (2018) Validity of fish, birds and mammals as surrogates for amphibians and reptiles in pesticide toxicity assessment. Ecotoxicology 27:819–833

    Article  CAS  Google Scholar 

  • Pollo FE, Grenat PR, Otero MA, Babini S, Salas NE, Martino AL (2019) Evaluation in situ of genotoxic and cytotoxic response in the diploid/ polyploid complex Odontophrynus (Anura: Odontophrynidae) inhabiting agroecosystems. Chemosphere 216:306–312

    Article  CAS  Google Scholar 

  • PPDB (2018) Pesticide properties database. https://sitem.herts.ac.uk/aeru/ppdb/en/index.htm. Accessed 5 Nov 2018

  • Rudorff BFT, Aguiar DA, Silva WF, Sugawara LM, Adami M, Moreira MA (2010) Studies on the rapid expansion of sugarcane for ethanol production in São Paulo State (Brazil) using Landsat data. Remote Sens 2:1057–1076

    Article  Google Scholar 

  • Sánchez-Domene D, Navarro-Lozano A, Acayaba R, Picheli K, Montagner C, Rossa-Feres DC, da Silva FR, de Almeida EA (2018) Eye malformation baseline in Scinax fuscovarius larvae populations that inhabit agroecosystem ponds in southern Brazil. Amphibia-Reptilia 39:325–334

    Article  Google Scholar 

  • Schiesari L (2004) Performance tradeoffs across resource gradients in anuran larvae. Ph.D. thesis, University of Michigan, USA

  • Schiesari L, Corrêa DT (2016) Consequences of agroindustrial sugarcane production to freshwater biodiversity. GCB Bioenergy 8:644–657

    Article  CAS  Google Scholar 

  • Schiesari L, Grillitsch B, Grillitsch H (2007) Biogeographic biases in research and their consequences for linking amphibian declines to pollution. Conserv Biol 21:465–471

    Article  Google Scholar 

  • Schiesari L, Werner EE, Kling GW (2009) Carnivory and resource-based niche differentiation in anuran larvae: implications for food web and experimental ecology. Freshwater Biol 54:572–586

    Article  Google Scholar 

  • SINDAG–Sindicato Nacional da Indústria de Produtos para Defesa Agrícola (2012) Vendas de defensivos agrícolas são recordes e vão a US$ 8,5 bi em 2011. SINDAG News.

  • Sparling DW, Linder G, Bishop C, Krest S (2010) Ecotoxicology of amphibians and reptiles. SETAC/Taylor & Francis, Boca Raton, FL

  • Sprague JB (1985) Factors that modify toxicity. In: Rand GM, Petrocelli SR (eds) Fundamentals of aquatic toxicology. Hemisphere, Washington, DC, pp 124–163

  • Valencia-Aguilar A, Cortés-Gómez AM, Ruiz-Agudelo CA (2013) Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. Int J Biodivers Sci Ecosyst Serv Manage 9:257–272

    Article  Google Scholar 

  • Van den Brink PJ, Blake N, Brock TCM, Maltby L (2006) Predictive value of species sensitivity distributions for effects of herbicides in freshwater ecosystems. Hum Ecol Risk Assess 12:645–674

    Article  CAS  Google Scholar 

  • Van Der Kraak GJ, Hosmer AJ, Hanson ML, Kloas W, Solomon KR (2014) Effects of atrazine in fish, amphibians, and reptiles: an analysis based on quantitative weight of evidence. Crit Rev Toxicol 44:1–66

    Article  CAS  Google Scholar 

  • Van Vlaardingen P, Traas TP, Wintersen AM, Aldenberg T (2004) ETX 2.0. A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity data. RIVM Report No. 601501028/2004, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands

  • Vasconcelos AM, Daam MA, dos Santos LRA, Sanches ALM, Araújo CVM, Espíndola ELG (2016) Acute and chronic sensitivity, avoidance behavior and sensitive life stages of bullfrog tadpoles exposed to the biopesticide abamectin. Ecotoxicology 25:500–509

    Article  CAS  Google Scholar 

  • Verdade VK, Carnaval AC, Rodrigues MT, Sciesari LC, Pavan D, Bertoluci JA (2011) Decline of amphibians in Brazil. In: Heatwole H, Wilkinson JW (eds) Amphibian biology. Status of decline of amphibians: Western Hemisphere. Part 2: Uruguay, Brazil, Ecuador and Colombia. Surrey Beatty and Sons, Chipping Norton, Australia, p 85–127

  • Weltje L, Simpson P, Gross M, Crane M, Wheeler J (2013) Comparative acute and chronic sensitivity of fish and amphibians: a critical review of data. Environ Toxicol Chem 32:984–994

    Article  CAS  Google Scholar 

  • Weltje L, Wheeler J (2015) Letters to the editor. Environ Toxicol Chem 34:2–3

    Article  CAS  Google Scholar 

  • Whitfield SM, Lips KR, Donnelly MA (2016) Amphibian decline and conservation in central America. Copeia 104:351–379

    Article  Google Scholar 

  • Wogram J, Liess M (2001) Rank ordering of macroinvertebrate species sensitivity to toxic compounds by comparison with that of Daphnia magna. Bull Environ Contam Toxicol 67:360–367

    CAS  Google Scholar 

  • Zhelev Z, Tsonev S, Georgieva K, Arnaudova D (2018) Health status of Pelophylax ridibundus (Amphibia: Ranidae) in a rice paddy ecosystem in Southern Bulgaria and its importance in assessing environmental state: haematological parameters. Environ Sci Pollut Res 25:7884–7895

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank ICMBio (ICMBio 17559) and the Museu de Zoologia da Universidade de São Paulo for collection permits, São Paulo Research Foundation (FAPESP) for a scholarship to M. Moutinho (2011/05280-6), and FAPESP Bioenergy Research Program (Young Researcher Award 2008/57939-9) and FAPESP Global Climate Change Research Program (Thematic Project 2015/18790-3) for funding this research. This work was also supported by the Portuguese government (FCT) through a postdoc grant for M. Daam (SFRH/BPD/109199/2015) and the research unit UID/AMB/04085/2019 (CENSE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Schiesari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The permit for collection, transport and storage of the test animals used in this study was provided by IBAMA/ICMBio (permit number 17559-1) and the tests conducted were approved by the ethical Commission of the Instituto de Biociências da Universidade de São Paulo (Protocol 039/2007).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daam, M.A., Moutinho, M.F., Espíndola, E.L.G. et al. Lethal toxicity of the herbicides acetochlor, ametryn, glyphosate and metribuzin to tropical frog larvae. Ecotoxicology 28, 707–715 (2019). https://doi.org/10.1007/s10646-019-02067-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-019-02067-5

Keywords

Navigation