Skip to main content
Log in

Antioxidant response and metal accumulation in tissues of Iberian green frogs (Pelophylax perezi) inhabiting a deactivated uranium mine

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Human mining activities tend often to generate greatly impacted areas which remain contaminated for long periods of time, giving rise to extreme habitats. Mining sites are usually characterized for the production of metal rich effluents with very low pH. In this work we analyzed physical and chemical parameters of water from a deactivated uranium mine pond (M) and a reference site (REF) as well as their metal content. Furthermore, we determined and compared metal accumulation in liver, kidney, bones, muscle and skin of Pelophylax perezi from REF with P. perezi from M. We also determined the enzymatic activities of glutathione-S-transferases (GSTs), catalase (CAT), glutathione reductase (Gred), and glutathione peroxidase (GPx; both selenium-dependent and selenium-independent) in liver, kidney, lung and heart. Additionally, lipoperoxidation (LPO) was also assessed in the same tissues via thiobarbituric acid reactive substances (TBARS) assay and lactate dehydrogenase (LDH) activity was determined in muscle. Our results revealed that the majority of metals were in higher concentrations in tissues of organisms from M. This trend was especially evident for U whose content reached a difference of 1350 fold between REF and M organisms. None of the organs tested for antioxidant defenses revealed LPO, nonetheless, with exception for liver, all organs from the M frogs presented increased total GPx activity and selenium-dependent GPx. However, this response was significant only for the lung, probably as a consequence of the significant inhibition of CAT upstream and to cope with the subsequent increase in H2O2. Lungs were the organs displaying greater responsiveness of the anti-oxidant stress system in frogs from the uranium mine area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

    Article  CAS  Google Scholar 

  • André A, Antunes SC, Gonçalves F, Pereira R (2009) Bait-lamina assay as a tool to assess the effects of metal contamination in the feeding activity of soil invertebrates within a uranium mine area. Environ Pollut 157(8–9):2368–2377. doi:10.1016/j.envpol.2009.03.023

    Article  Google Scholar 

  • Antunes SC, de Figueiredo DR, Marques SM, Castro BB, Pereira R, Gonçalves F (2007a) Evaluation of water column and sediment toxicity from an abandoned uranium mine using a battery of bioassays. Sci Total Environ 374:252–259. doi:10.1016/j.scitotenv.2006.11.025

    Article  CAS  Google Scholar 

  • Antunes SC, Pereira R, Gonçalves F (2007b) Acute and chronic toxicity of effluent water from an abandoned uranium mine. Arch Environ Contam Toxicol 53(2):207–213. doi:10.1007/s00244-006-0011-9

    Article  CAS  Google Scholar 

  • Antunes SC, Pereira R, Gonçalves F (2007c) Evaluation of the potential toxicity (acute and chronic) of sediments from an abandoned uranium mine ponds. J Soil Sediment 7(6):368–376. doi:10.1065/jss2007.08.247

    Article  CAS  Google Scholar 

  • Antunes SC, Castro BB, Pereira R, Gonçalves F (2008) Contribution for tier 1 of the ecological risk assessment of Cunha Baixa uranium mine (central Portugal): II. Soil ecotoxicological screening. Sci Total Environ 390:387–395. doi:10.1016/j.scitotenv.2007.07.053

    Article  CAS  Google Scholar 

  • APHA (1995) Standard methods for the examination of water and wastewater, 19th edn. ASTM, Washington, DC

    Google Scholar 

  • Arruda-Neto JD, Guevara MV, Nogueira GP, Saiki M, Cestari AC, Shtejer K, Deppman A, Filho JWP, Garcia F, Geraldo LP, Gouveia AN, Guzmán F, Mesa J, Rodriguez O, Semmler R, Vanin VR (2004) Long-term accumulation of uranium in bones of Wistar rats as function of intake dosages. Radiat Prot Dosim 112(3):385–393. doi:10.1093/rpd/nch405

    Article  CAS  Google Scholar 

  • Atli G, Alptekin O, Tükel S, Canli M (2006) Response of catalase activity of Ag+, Cd2+, Cr6+, Cu2+ and Zn2+ in five tissues of freshwater Oreochromis niloticus. Comp Biochem Physiol 143C:218–224. doi:10.1016/j.cbpc.2006.02.003

    CAS  Google Scholar 

  • ATSDR—Agency for Toxic Substances and Disease Registry (1999) Toxicological profile for uranium. U.S. Department of health and human services, Atlanta, GA

    Google Scholar 

  • ATSDR—Agency for Toxic Substances and Disease Registry (2004) Toxicological profile for cobalt. U.S. Department of health and human services, Atlanta, GA

    Google Scholar 

  • ATSDR—Agency for Toxic Substances and Disease Registry (2006) Toxicological profile for aluminum. U.S. Department of health and human services, Atlanta, GA

    Google Scholar 

  • Barillet S, Adam C, Palluel O, Devaux A (2007) Bioaccumulation, oxidative stress, and neurotoxicity in Danio rerio exposed to different isotopic compositions of uranium. Environ Toxicol Chem 26(3):497–505. doi:10.1897/06-243R.1

    Article  CAS  Google Scholar 

  • Behne D, Wolters W (1983) Distribution of selenium and glutathione peroxidase in the rat. J Nutr 113:456–461

    CAS  Google Scholar 

  • Bondy SC, Ali SF, Guo-Ross S (1998) Aluminum but not iron induces pro-oxidant events in the rat brain. Mol Chem Neuropathol 34(2–3):219–232. doi:10.1007/BF02815081

    Article  CAS  Google Scholar 

  • Bozhkov A, Padalko V, Dlubovskaya V, Menzianova N (2010) Resistance to heavy metal toxicity in organisms under chronic exposure. Indian J Exp Biol 48:679–696

    CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microssomal lipid peroxidation. Method Enzymol 52:302–310. doi:10.1016/S0076-6879(78)52032-6

    Article  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490. doi:10.1016/S0076-6879(85)13062-4

    Article  CAS  Google Scholar 

  • Cooley HM, Klaverkamp JF (2000) Accumulation and distribution of dietary uranium in Lake Whitefish (Coregonus clupeaformis). Aquat Toxicol 48:477–494. doi:10.1016/S0166-445X(99)00058-2

    Article  CAS  Google Scholar 

  • Cooper S, Fortin C (2010) Metal and metallothionein content in bullfrogs: study of a whole watershed impacted by agricultural activities. Ecotox Environ Safe 73(3):391–399. doi:10.1016/j.ecoenv.2009.12.006

    Article  CAS  Google Scholar 

  • Drolet-Vives K, Zayed J, Sauvé S (2009) Assessment of hair and bone accumulation of beryllium by mice exposed to contaminated dusts. J Appl Toxicol 29(7):638–642. doi:10.1002/jat.144

    Article  CAS  Google Scholar 

  • Farombi EO, Adelowo OA, Ajimoko YR (2007) Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish (Clarias gariepinus) from Nigeria Ogun River. Int J Environ Res Public Health 4(2):158–165. doi:10.3390/ijerph2007040011

    Article  CAS  Google Scholar 

  • Fisenne IM (1994) Uranium. In: Seiler HG, Sigel A, Sigel H (eds) Handbook on metals in clinical and analytical chemistry. Marcel Dekker, Inc, New York

    Google Scholar 

  • Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Method Enzymol 105:114–120

    Article  Google Scholar 

  • Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayiotidis M (2009) Environmental toxicity, oxidative stress and apoptosis: Ménage à Trois. Mutat Res 674:3–22. doi:10.1016/j.mrgentox.2008.11.012

    CAS  Google Scholar 

  • Galaris D, Evangelou A (2002) The role of oxidative stress in mechanism of metal-induced carcinogenesis. Crit Rev Oncol Hemat 42:93–103. doi:10.1016/S1040-8428(01)00212-8

    Article  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases—the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Kelly JM, Janz DM (2009) Assessment of oxidative stress and histopathology in juvenile northern pike (Esox lucius) inhabiting downstream of a uranium mill. Aquat Toxicol 92:240–249. doi:10.1016/j.aquatox.2009.02.007

    Article  CAS  Google Scholar 

  • Lalaouni A, Henderson C, Kupper C, Grant MH (2007) The interaction of chromium (VI) with macrophages: depletion of glutathione and inhibition of glutathione reductase. Toxicology 236(1–2):76–81. doi:10.1016/j.tox.2007.04.002

    Article  CAS  Google Scholar 

  • Lefcort H, Meguire RA, Wilson LH, Ettinger WF (1998) Heavy metals alter the survival, growth, metamorphosis, and antipredatory behaviour of Columbia spotted frog (Rana luteiventris) tadpoles. Arch Environ Contam Toxicol 35:447–456. doi:10.1007/s002449900401

    Article  CAS  Google Scholar 

  • Leonard SS, Harris GK, Shi X (2004) Metal-induced oxidative stress and signal transduction. Free Radical Bio Med 37(12):1921–1942. doi:10.1016/j.freeradbiomed.2004.09.010

    Article  CAS  Google Scholar 

  • Linder G, Grillitsch B (2000) Ecotoxicology of metals. In: Sparling DW, Linder G, Bishop CA (eds) Ecotoxicology of amphibians and reptiles. SETAC Technical Publication Series, Pensacola, FL

    Google Scholar 

  • Loumbourdis NS, Kyriakkopoulou-Skavounou P, Zachariadis G (1999) Effects of cadmium exposure on bioaccumulation and larval growth in the frog Rana ridibunda. Environ Pollut 104:429–433. doi:10.1016/S0269-7491(98)00172-9

    Article  CAS  Google Scholar 

  • Loumbourdis NS, Kostaropoulos I, Theodoropoulou B, Kalmanti D (2007) Heavy metal accumulation and metallothionein concentration in frog Rana ridibunda after exposure to chromium or a mixture of chromium and cadmium. Environ Pollut 145:787–792. doi:10.1016/j.envpol.2006.05.011

    Article  CAS  Google Scholar 

  • Lourenço JI, Pereira RO, Silva AC, Morgado JM, Carvalho FP, Oliveira JM, Malta MP, Paiva AA, Mendo SA, Gonçalves F (2011) Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides. J Hazard Mater 186:786–795. doi:10.1016/j.jhazmat.2010.11.073

    Article  Google Scholar 

  • MA (1998) Decreto Lei no. 236/98, 1 Agosto. Ministério do Ambiente. Diário da Republica no. 176/98 Série I–A, pp 3676–3722. http://dre.pt)

  • Malik N, Biswas AK, Qureshi A, Borana K, Virha R (2010) Bioaccumulation of heavy metals in fish tissues of freshwater Lake of Bhopal. Environ Monit Assess 160:267–276. doi:10.1007/s10661-008-0693-8

    Article  CAS  Google Scholar 

  • Marques SM, Gonçalves F, Pereira R (2008) Effects of a uranium mine effluent in the early-life stages of Rana perezi Seoane. Sci Total Environ 402:29–35. doi:10.1016/j.scitotenv.2008.04.005

    Article  CAS  Google Scholar 

  • Marques SM, Antunes SC, Pissarra H, Pereira ML, Gonçalves F, Pereira R (2009) Histopathological changes and erythrocytic nuclear abnormalities in Iberian green frogs (Rana perezi Seoane) from a uranium mine pond. Aquat Toxicol 91:187–195. doi:10.1016/j.aquatox.2008.04.010

    Article  CAS  Google Scholar 

  • Marqués MJ, Martínez-Conde E, Rovira JV (2003) Effects of zinc and lead mining on the benthic macroinvertebrates of a fluvial ecosystem. Water Air Soil Poll 148:363–388. doi:10.1023/A:1025411932330

    Article  Google Scholar 

  • McDiarmid RW, Mitchell JC (2000) Diversity and distribution of amphibians and reptiles. In: Sparling DW, Linder G, Bishop CA (eds) Ecotoxicology of amphibians and reptiles. SETAC Technical Publication Series, Pensacola, FL

    Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Ann Rev Biochem 52:711–760

    Article  CAS  Google Scholar 

  • Oliveira JMS, Ávila PF (1998) Estudo geoquímico na área da mina da Cunha Baixa (Mangualde, no centro de Portugal). Relatório do Instituto Geológico e Mineiro, Lisboa

    Google Scholar 

  • Oliveira JMS, Ávila PF (2001) Geoquímica na área envolvente da mina da Cunha Baixa (Mangualde, no centro de Portugal). Estudos, Notas e Trabalhos, Tomo 43, Instituto Geológico e Mineiro

  • Ortiz ME, Marco A, Saiz N, Lizana M (2004) Impact of ammonium nitrate on growth and survival of six european amphibians. Arch Environ Contam Toxicol 47:234–239. doi:10.1007/s00244-004-2296-x

    Article  CAS  Google Scholar 

  • Pandya CD, Pillai PP, Gupta SS (2010) Lead and cadmium co-exposure mediated toxic insults on hepatic steroid metabolism and antioxidant system of adult male rats. Biol Trace Elem Res 134:307–317. doi:10.1007/s12011-009-8479-6

    Article  CAS  Google Scholar 

  • Pellmar TC, Fuciarelli AF, Ejnik JW, Hamilton M, Hogan J, Strocko S, Emond C, Mottaz HM, Landauer MR (1999) Distribution of uranium in rats implanted with depleted uranium pellets. Toxicol Sci 49:29–39. doi:10.1093/toxsci/49.1.29

    Article  CAS  Google Scholar 

  • Pereira R, Antunes SC, Marques SM, Gonçalves F (2008) Contribution for tier 1 of the ecological risk assessment of Cunha Baixa uranium mine (central Portugal): I. Soil chemical characterization. Sci Total Environ 390:377–386. doi:10.1016/j.scitotenv.2007.08.051

    Article  CAS  Google Scholar 

  • Pereira R, Marques CR, Silva Ferreira MJ, Neves MFJV, Caetano AL, Antunes SC, Mendo S, Gonçalves F (2009) Phytotoxicity and genotoxicity of soils from an abandoned uranium mine area. Appl Soil Ecol 42(3):209–220. doi:10.1016/j.apsoil.2009.04.002

    Article  Google Scholar 

  • Periyakaruppan A, Kumar F, Sarkar S, Sharma CS, Ramesh GT (2007) Uranium induces oxidative stress in lung epithelial cells. Arch Toxicol 81:389–395. doi:10.1007/s00204-006-0167-0

    Article  CAS  Google Scholar 

  • Pigeolet E, Corbisier P, Houbion A, Lambert D, Michiels C, Raes M, Zachary MD, Remacle J (1990) Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech Ageing Dev 51(3):283–297. doi:10.1016/0047-6374(90)90078-T

    Article  CAS  Google Scholar 

  • Rossman MD (1994) Beryllium. In: Seiler HG, Sigel A, Sigel H (eds) Handbook on metals in clinical and analytical chemistry. Marcel Dekker, Inc, New York

    Google Scholar 

  • Różanowska M, Sarna T, Land EJ, Truscott TG (1999) Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Radical Biol Med 26:518–525. doi:10.1016/S0891-5849(98)00234-2

    Article  Google Scholar 

  • Santo JC, Freire AP (1983) Tratamento de minérios pobres na mina da Cunha Baixa. Bol Minas 20(3):139–145

    Google Scholar 

  • Schaller K, Raithel H, Angerer J (1994a) Nickel. In: Seiler HG, Sigel A, Sigel H (eds) Handbook on metals in clinical and analytical chemistry. Marcel Dekker, Inc, New York

    Google Scholar 

  • Schaller K, Letzel S, Angerer J (1994b) Aluminum. In: Seiler HG, Sigel A, Sigel H (eds) Handbook on metals in clinical and analytical chemistry. Marcel Dekker, Inc, New York

    Google Scholar 

  • Singh MS, Sivalingam PM (1982) In vitro study on the interactive effects of heavy metals on catalase activity of Sarotherodon mossambicus (Peters). J Fish Biol 20(6):683–688. doi:10.1111/j.1095-8649.1982.tb03978.x

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol Med 18(2):321–336. doi:10.1016/0891-5849(94)00159-H

    Article  CAS  Google Scholar 

  • Stolyar OB, Loumbourdis NS, Falfushinska HI, Romanchuk LD (2008) Comparison of metal bioavailability in frogs from urban and rural sites of western Ukraine. Arch Environ Contam Toxicol 54:107–113. doi:10.1007/s00244-007-9012-6

    Article  CAS  Google Scholar 

  • Strydom C, Robinson C, Pretorius E, Whitcutt JM, Marx J, Bornman MS (2006) The effect of selected metals on the central metabolic pathways in biology: a review. Water SA 32(4):543–554

    CAS  Google Scholar 

  • Suter GW II, Tsao CL (1996) Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: revision. Oak Ridge National Laboratory, ES/ER/TM-96/R2. Oak Ridge National Laboratory, Oak Ridge, TN

    Book  Google Scholar 

  • Tandogan B, Ulusu NN (2010) Inhibition of purified bovine liver glutathione reductase with some metal ions. J Enzym Inhib Med Chem 25:68–73. doi:10.3109/14756360903016512

    Article  CAS  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarker of oxidative stress in aquatic organism in relation to toxic environmental pollutants. Ecotox Environ Safe 64(2):178–189. doi:10.1016/j.ecoenv.2005.03.013

    Article  CAS  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149. doi:10.1016/S1382-6689(02)00126-6

    Article  Google Scholar 

  • Vassault A (1983) Lactate dehydrogenase. Method Enzym Anal 3:118–126

    CAS  Google Scholar 

  • Vogiatzis AK, Loumbourdis NS (1997) Uptake, tissue distribution and depuration of cadmium (Cd) in the frog Rana ridibunda. Bull Environ Contam Toxicol 59:770–776. doi:10.1007/s001289900547

    Article  CAS  Google Scholar 

  • Wolke RE (1992) Piscine macrophage aggregates: a review. Annu Rev Fish Dis 2:337–343. doi:10.1016/0959-8030(92)90058-6

    Article  Google Scholar 

  • Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice-Hall International Inc, New Jersey

    Google Scholar 

Download references

Acknowledgments

Authors wish to acknowledge EDM for their collaboration. Sérgio M. Marques was supported by a PhD grant (ref. SFRH/BD/38282/2007) and Sara C. Antunes was recipient of a post-doctoral fellowship (ref. SFRH/BPD/40052/2007) from Fundação para a Ciência e Tecnologia (Portuguese Ministry of Science, Technology and Higher Education). This research is part of the projects Engenur (ref. PTDC/AAC-AMB/114057/2009) and UraniumRisk (ref. POCI/AMB/60899/2004) funded by the Portuguese Government (Program Ciência - Inovação 2010) and by the European Social Fund. This research was also partially funded by FSE and POPH funds (Programa Ciência 2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio M. Marques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, S.M., Antunes, S.C., Nunes, B. et al. Antioxidant response and metal accumulation in tissues of Iberian green frogs (Pelophylax perezi) inhabiting a deactivated uranium mine. Ecotoxicology 20, 1315–1327 (2011). https://doi.org/10.1007/s10646-011-0688-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0688-z

Keywords

Navigation