Skip to main content

Advertisement

Log in

Protecting Life and Lung: Protected Areas Affect Fine Particulate Matter and Respiratory Hospitalizations in the Brazilian Amazon Biome

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

There is growing recognition of the connection between ecosystem conservation and human health. For example, protection of tropical forests can affect the spread of infectious diseases, water quality, and dietary diversity, while forest loss can have important consequences for respiratory health due to the use of fire for converting land to alternative uses in many countries. Studies demonstrating links between ecosystems and health often conclude with recommendations to expand policies that protect natural ecosystems. However, there is little empirical evidence on the extent to which conservation policies actually deliver health benefits when they are implemented in real contexts. We estimate the effects of protected areas (PAs), the dominant type of conservation policy, on hospitalizations for respiratory illness in the Brazilian Amazon biome. We find that doubling upwind PAs reduces PM2.5 by 10% and respiratory hospitalizations by 7% in the months of most active biomass burning. Brazil has an extensive network of PAs, but investments in management and enforcement have declined in recent years. Forest fires have increased dramatically over the same period. We estimate that the value of the health benefits exceed current average expenditures on PA management for the 1/3 of PAs with the largest local populations, although not for PAs in more remote locations. Our findings highlight how quantifying the contributions to the wellbeing of local populations can support conservation objectives, even if global environmental benefits are not a high priority for decision makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We drop the municipality of Jacareacanga as population varies from 8 to 41,487 during 2006 to 2018 while annual respiratory hospitalizations range from approximately 5 to 12, suggesting a data entry issue.

  2. All of the following values are converted to 2022 US$ from the currency and year of the original data.

References

  • Abessa D, Famá A, Buruaem L (2019) The systematic dismantling of Brazilian environmental laws risks losses on all fronts. Nat Ecol Evol 3:510–511. https://doi.org/10.1038/s41559-019-0855-9

    Article  Google Scholar 

  • Adetona O, Reinhardt TE, Domitrovich J, Broyles G, Adetona AM, Kleinman MT, Ottmar RD, Naeher LP (2016) Review of the health effects of wildland fire smoke on wildland firefighters and the public. Inhal Toxicol 28:95–139

    Article  Google Scholar 

  • Agrawal A (2014) Matching and mechanisms in protected area and poverty alleviation research. Proc Natl Acad Sci 111:3909–3910

    Article  Google Scholar 

  • Alvarado ST, Silva TSF, Archibald S (2018) Management impacts on fire occurrence: a comparison of fire regimes of African and South American tropical savannas in different protected areas. J Environ Manag 218:79–87. https://doi.org/10.1016/j.jenvman.2018.04.004

    Article  Google Scholar 

  • Andam KS, Ferraro PJ, Pfaff A, Sanchez-Azofeifa GA, Robalino JA (2008) Measuring the effectiveness of protected area networks in reducing deforestation. Proc Natl Acad Sci 105:16089

    Article  Google Scholar 

  • Andam KS, Ferraro PJ, Sims KRE, Healy A, Holland MB (2010) Protected areas reduced poverty in Costa Rica and Thailand. Proc Natl Acad Sci 107:9996–10001. https://doi.org/10.1073/pnas.0914177107

    Article  Google Scholar 

  • Aragão LEOC, Malhi Y, Barbier N, Lima A, Shimabukuro Y, Anderson L, Saatchi S (2008) Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos Trans R Soc B Biol Sci 363:1779–1785. https://doi.org/10.1098/rstb.2007.0026

    Article  Google Scholar 

  • Araujo G (2022) Deforestation in Brazil’s Amazon hits September record as fires spike [WWW Document]. https://www.reuters.com/business/environment/deforestation-brazils-amazon-hits-september-record-fires-spike-2022-10-07/. Accessed 28 Oct 22

  • Badura T, Ferrini S, Burton M, Binner A, Bateman IJ (2020) Using individualised choice maps to capture the spatial dimensions of value within choice experiments. Environ Resour Econ 75:297–322. https://doi.org/10.1007/s10640-019-00358-3

    Article  Google Scholar 

  • Bateson TF, Schwartz J (2007) Children’s response to air pollutants. J Toxicol Environ Health A 71:238–243

    Article  Google Scholar 

  • Bauch SC, Birkenbach AM, Pattanayak SK, Sills EO (2015) Public health impacts of ecosystem change in the Brazilian Amazon. Proc Natl Acad Sci 112:7414–7419

    Article  Google Scholar 

  • Beatty TK, Shimshack JP (2014) Air pollution and children’s respiratory health: a cohort analysis. J Environ Econ Manag 67:39–57

    Article  Google Scholar 

  • Bernard E, Penna LA, Araújo E (2014) Downgrading, downsizing, degazettement, and reclassification of protected areas in Brazil. Conserv Biol 28:939–950

    Article  Google Scholar 

  • Boisier JP, Ciais P, Ducharne A, Guimberteau M (2015) Projected strengthening of Amazonian dry season by constrained climate model simulations. Nat Clim Change 5:656–660

    Article  Google Scholar 

  • Bondy M, Roth S, Sager L (2020) Crime is in the air: the contemporaneous relationship between air pollution and crime. J Assoc Environ Resour Econ 7:555–585. https://doi.org/10.1086/707127

    Article  Google Scholar 

  • Boulton CA, Lenton TM, Boers N (2022) Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat Clim Change 12:271–278. https://doi.org/10.1038/s41558-022-01287-8

    Article  Google Scholar 

  • Brook RD, Rajagopalan S, Pope CA III, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121:2331–2378

    Article  Google Scholar 

  • Burke M, Driscoll A, Heft-Neal S, Xue J, Burney J, Wara M (2021) The changing risk and burden of wildfire in the United States. Proc Natl Acad Sci 118:e2011048118

    Article  Google Scholar 

  • Bush MB, Silman MR, McMichael C, Saatchi S (2008) Fire, climate change and biodiversity in Amazonia: a Late-Holocene perspective. Philos Trans R Soc B Biol Sci 363:1795–1802. https://doi.org/10.1098/rstb.2007.0014

    Article  Google Scholar 

  • Canavire-Bacarreza G, Hanauer MM (2013) Estimating the impacts of Bolivia’s protected areas on poverty. World Dev 41:265–285. https://doi.org/10.1016/j.worlddev.2012.06.011

    Article  Google Scholar 

  • Cardoso de Mendonça MJ, Sachsida A, Loureiro PR (2006) Estimation of damage to human health due to forest burning in the Amazon. J Popul Econ 19:593–610

    Article  Google Scholar 

  • Carrillo B, Branco DK, Trujillo JC, Lima JE (2019) The externalities of a deforestation control policy in infant health: evidence from Brazil. Econ Dev Cult Change 67:369–400

    Article  Google Scholar 

  • Castro MC, Massuda A, Almeida G, Menezes-Filho NA, Andrade MV, de Souza Noronha KVM, Rocha R, Macinko J, Hone T, Tasca R et al (2019) Brazil’s unified health system: the first 30 years and prospects for the future. The Lancet 394:345–356

    Article  Google Scholar 

  • Center for International Earth Science Information Network—CIESIN (2018) Gridded Population of the World, Version 4 (GPWv4): population count, Revision 11. NASA Socioeconomic Data and Applications Center (SEDAC), Columbia University, Palisades, New York

  • Chen S, Qin P, Tan-Soo J-S, Xu J, Yang J (2020) An econometric approach toward identifying the relationship between vehicular traffic and air quality in Beijing. Land Econ 96:333–348

    Article  Google Scholar 

  • Cisneros E, Börner J, Pagiola S, Wunder S (2022) Impacts of conservation incentives in protected areas: the case of Bolsa Floresta, Brazil. J Environ Econ Manag 111:102572. https://doi.org/10.1016/j.jeem.2021.102572

    Article  Google Scholar 

  • Cochrane MA (2003) Fire science for rainforests. Nature 421:913–919. https://doi.org/10.1038/nature01437

    Article  Google Scholar 

  • Cochrane MA, Schulze MD (1999) Fire as a recurrent event in tropical forests of the eastern amazon: effects on forest structure, biomass, and species composition 1. Biotropica 31:2–16

    Google Scholar 

  • Coelho FC, Lana RM, Cruz OG, Villela DAM, Bastos LS, Piontti APY, Davis JT, Vespignani A, Codeço CT, Gomes MFC (2020) Assessing the spread of COVID-19 in Brazil: Mobility, morbidity and social vulnerability. PLoS ONE. https://doi.org/10.1371/journal.pone.0238214

    Article  Google Scholar 

  • Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389(10082):1907–1918

  • Convention on Biological Diversity (2020) Recommendation adopted by the open-ended working group on the post-2020 global biodiversity framework

  • Correia S, Guimarães P, Zylkin T (2020) Fast Poisson estimation with high-dimensional fixed effects. Stata J 20:95–115

    Article  Google Scholar 

  • Cumming GS (2016) The relevance and resilience of protected areas in the Anthropocene. Anthropocene 13:46–56

    Article  Google Scholar 

  • Currie J, Neidell M (2005) Air pollution and infant health: what can we learn from California’s recent experience? Q J Econ 120:1003–1030

    Google Scholar 

  • da Silva MD, Fearnside PM (2022) Brazil: environment under attack. Environ Conserv 49:203–205. https://doi.org/10.1017/S0376892922000364

    Article  Google Scholar 

  • da Silva JMC, de Castro Dias TCA, da Cunha AC, Cunha HFA (2019) Public spending in federal protected areas in Brazil. Land Use Policy 86:158–164

    Article  Google Scholar 

  • da Silva JMC, de Castro Dias TCA, da Cunha AC, Cunha HFA (2021) Funding deficits of protected areas in Brazil. Land Use Policy 100:104926

    Article  Google Scholar 

  • Davidson EA, de Araújo AC, Artaxo P, Balch JK, Brown IF, Bustamante MM, Coe MT, DeFries RS, Keller M, Longo M et al (2012) The Amazon basin in transition. Nature 481:321–328

    Article  Google Scholar 

  • de Area Leão Pereira EJ, de Santana Ribeiro LC, da Silva Freitas LF, de Barros Pereira HB (2020) Brazilian policy and agribusiness damage the Amazon rainforest. Land Use Policy 92:104491. https://doi.org/10.1016/j.landusepol.2020.104491

  • de Oliveira MM, Fuller TL, Gabaglia CR, Cambou MC, Brasil P, de Vasconcelos ZFM, Nielsen-Saines K (2022) Repercussions of the COVID-19 pandemic on preventive health services in Brazil. Prev Med 155:106914

    Article  Google Scholar 

  • DeFlorio-Barker S, Crooks J, Reyes J, Rappold AG (2019) Cardiopulmonary effects of fine particulate matter exposure among older adults, during wildfire and non-wildfire periods, in the United States 2008–2010. Environ Health Perspect 127:037006

    Article  Google Scholar 

  • Delfino RJ, Brummel S, Wu J, Stern H, Ostro B, Lipsett M, Winer A, Street DH, Zhang L, Tjoa T (2009) The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occup Environ Med 66:189–197

    Article  Google Scholar 

  • Deryugina T, Heutel G, Miller NH, Molitor D, Reif J (2019) The mortality and medical costs of air pollution: evidence from changes in wind direction. Am Econ Rev 109:4178–4219. https://doi.org/10.1257/aer.20180279

    Article  Google Scholar 

  • Dissanayake STM, Ando AW (2014) Valuing grassland restoration: proximity to substitutes and trade-offs among conservation attributes. Land Econ 90:237–259. https://doi.org/10.3368/le.90.2.237

    Article  Google Scholar 

  • do Val Simardi Beraldo Souza T, Thapa B, Rodrigues CG de O, Imori D (2019) Economic impacts of tourism in protected areas of Brazil. J Sustain Tour 27:735–749

  • European Respiratory Society (2017) The global impact of respiratory disease, in: Forum of International Respiratory Societies. European Respiratory Society Sheffield, UK

  • Feng Y, Cheng J, Shen J, Sun H (2019) Spatial effects of air pollution on public health in China. Environ Resour Econ 73:229–250

    Article  Google Scholar 

  • Ferraro PJ, Hanauer MM (2014) Advances in measuring the environmental and social impacts of environmental programs. Annu Rev Environ Resour 39:495–517. https://doi.org/10.1146/annurev-environ-101813-013230

    Article  Google Scholar 

  • Ferraro PJ, Lawlor K, Mullan KL, Pattanayak SK (2012) Forest figures: ecosystem services valuation and policy evaluation in developing countries. Rev Environ Econ Policy 6:20–44

    Article  Google Scholar 

  • Ferraro PJ, Hanauer MM, Miteva DA, Canavire-Bacarreza GJ, Pattanayak SK, Sims KR (2013) More strictly protected areas are not necessarily more protective: evidence from Bolivia, Costa Rica, Indonesia, and Thailand. Environ Res Lett 8:025011

    Article  Google Scholar 

  • Ferraro PJ, Hanauer MM, Miteva DA, Nelson JL, Pattanayak SK, Nolte C, Sims KRE (2015) Estimating the impacts of conservation on ecosystem services and poverty by integrating modeling and evaluation. Proc Natl Acad Sci 112:7420–7425. https://doi.org/10.1073/pnas.1406487112

    Article  Google Scholar 

  • Fontenelle LF, Sarti TD, de Camargo MBJ, Maciel ELN, Barros AJD (2019) Utilization of the Brazilian public health system by privately insured individuals: a literature review. Cad Saúde Pública 35:e00004118. https://doi.org/10.1590/0102-311x00004118

    Article  Google Scholar 

  • Galvêas D, Barros F Jr, Fuzo C (2021) A forensic analysis of SARS-CoV-2 cases and COVID-19 mortality misreporting in the Brazilian population. Public Health 196:114–116

    Article  Google Scholar 

  • Galway LP, Acharya Y, Jones AD (2018) Deforestation and child diet diversity: a geospatial analysis of 15 sub-Saharan African countries. Health Place 51:78–88

    Article  Google Scholar 

  • Garg T (2019) Ecosystems and human health: the local benefits of forest cover in Indonesia. J Environ Econ Manag 98:102271

    Article  Google Scholar 

  • Giardina F, Konings AG, Kennedy D, Alemohammad SH, Oliveira RS, Uriarte M, Gentine P (2018) Tall Amazonian forests are less sensitive to precipitation variability. Nat Geosci 11:405–409

    Article  Google Scholar 

  • Guedes G, Costa S, Brondízio E (2009) Revisiting the hierarchy of urban areas in the Brazilian Amazon: a multilevel approach. Popul Environ 30:159–192

    Article  Google Scholar 

  • Hope M (2019) The Brazilian development agenda driving Amazon devastation. Lancet Planet Health 3:e409–e411

    Article  Google Scholar 

  • Horton R, Lo S (2015) Planetary health: a new science for exceptional action. The Lancet 386:1921–1922

    Article  Google Scholar 

  • Hsiang S, Oliva P, Walker R (2019) The distribution of environmental damages. Rev Environ Econ Policy 6:66

    Google Scholar 

  • IBGE (2017) IBGE releases population estimates of municipalities for 2021. CensoAgro

  • Jayachandran S (2009) Air quality and early-life mortality evidence from Indonesia’s wildfires. J Hum Resour 44:916–954

    Google Scholar 

  • Jiménez-Muñoz JC, Mattar C, Barichivich J, Santamaría-Artigas A, Takahashi K, Malhi Y, Sobrino JA, van der Schrier G (2016) Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci Rep 6:33130. https://doi.org/10.1038/srep33130

    Article  Google Scholar 

  • Joppa LN, Pfaff A (2009) High and far: biases in the location of protected areas. PLoS ONE 4:e8273

    Article  Google Scholar 

  • Juffe-Bignoli D, Burgess ND, Bingham H, Belle EMS, De Lima, MG, Deguignet M, Bertzky B, Milam AN, Martinez-Lopez J, Lewis E (2018) Protected Planet Report 2018. International Union for the Conservation of Nature (IUCN)

  • Jusys T (2018) Changing patterns in deforestation avoidance by different protection types in the Brazilian Amazon. PLoS ONE 13:e0195900

    Article  Google Scholar 

  • Keane A, Lund JF, Bluwstein J, Burgess ND, Nielsen MR, Homewood K (2020) Impact of Tanzania’s wildlife management areas on household wealth. Nat Sustain 3:226–233

    Article  Google Scholar 

  • Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, Hudson P, Jolles A, Jones KE, Mitchell CE (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:647–652

    Article  Google Scholar 

  • Keles D, Delacote P, Pfaff A, Qin S, Mascia MB (2020) What drives the erasure of protected areas? Evidence from across the Brazilian Amazon. Ecol Econ 176:106733

    Article  Google Scholar 

  • Kleinschroth F, Healey JR (2017) Impacts of logging roads on tropical forests. Biotropica 49:620–635

    Article  Google Scholar 

  • Kupek E (2021) How many more? Under-reporting of the COVID-19 deaths in Brazil in 2020. Trop Med Int Health 26:1019–1028

    Article  Google Scholar 

  • Kyu HH, Vongpradith A, Sirota SB, Novotney A, Troeger CE, Doxey MC, Bender RG, Ledesma JR, Biehl MH, Albertson SB (2022) Age–sex differences in the global burden of lower respiratory infections and risk factors, 1990–2019: results from the Global Burden of Disease Study 2019. Lancet Infect Dis 22:1626–1647

    Article  Google Scholar 

  • Lai W, Li S, Li Y, Tian X (2022) Air pollution and cognitive functions: evidence from straw burning in China. Am J Agric Econ 104:190–208

    Article  Google Scholar 

  • Le Page Y, Morton D, Hartin C, Bond-Lamberty B, Pereira JMC, Hurtt G, Asrar G (2017) Synergy between land use and climate change increases future fire risk in Amazon forests. Earth Syst Dyn 8:1237–1246

    Article  Google Scholar 

  • Liang L, Cai Y, Barratt B, Lyu B, Chan Q, Hansell AL, Xie W, Zhang D, Kelly FJ, Tong Z (2019) Associations between daily air quality and hospitalisations for acute exacerbation of chronic obstructive pulmonary disease in Beijing, 2013–17: an ecological analysis. Lancet Planet Health 3:e270–e279

    Article  Google Scholar 

  • Libonati R, Pereira J, Da Camara C, Peres L, Oom D, Rodrigues J, Santos F, Trigo R, Gouveia C, Machado-Silva F et al (2021) Twenty-first century droughts have not increasingly exacerbated fire season severity in the Brazilian Amazon. Sci Rep 11:1–13

    Article  Google Scholar 

  • López-Feldman A, Heres D, Marquez-Padilla F (2021) Air pollution exposure and COVID-19: a look at mortality in Mexico City using individual-level data. Sci Total Environ 756:143929

    Article  Google Scholar 

  • Machado-Silva F, Libonati R, Melo de Lima TF, Bittencourt Peixoto R, de Almeida França JR, de Avelar Figueiredo Mafra Magalhães M, Lemos Maia Santos F, Abrantes Rodrigues J, DaCamara CC (2020) Drought and fires influence the respiratory diseases hospitalizations in the Amazon. Ecol Indic 109:105817. https://doi.org/10.1016/j.ecolind.2019.105817

  • Maillard O, Vides-Almonacid R, Flores-Valencia M, Coronado R, Vogt P, Vicente-Serrano SM, Azurduy H, Anívarro R, Cuellar RL (2020) Relationship of forest cover fragmentation and drought with the occurrence of forest fires in the Department of Santa Cruz, Bolivia. Forests 11:910

    Article  Google Scholar 

  • Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:66

    Article  Google Scholar 

  • Maté T, Guaita R, Pichiule M, Linares C, Díaz J (2010) Short-term effect of fine particulate matter (PM2. 5) on daily mortality due to diseases of the circulatory system in Madrid (Spain). Sci Total Environ 408:5750–5757

    Article  Google Scholar 

  • McNeely JA (2015) A political future for protected areas. Oryx 49:189–190

    Article  Google Scholar 

  • Miranda JJ, Corral L, Blackman A, Asner G, Lima E (2016) Effects of protected areas on forest cover change and local communities: evidence from the Peruvian Amazon. World Dev 78:288–307

    Article  Google Scholar 

  • Moeltner K, Kim M-K, Zhu E, Yang W (2013) Wildfire smoke and health impacts: a closer look at fire attributes and their marginal effects. J Environ Econ Manag 66:476–496

    Article  Google Scholar 

  • Morello TF (2021) COVID-19 and agricultural fire pollution in the Amazon: puzzles and solutions. World Dev 138:105276

    Article  Google Scholar 

  • Morello TF (2023) Hospitalization due to fire-induced pollution in the Brazilian Amazon: a causal inference analysis with an assessment of policy trade-offs. World Dev 161:106123

    Article  Google Scholar 

  • Morton D, Le Page Y, DeFries R, Collatz G, Hurtt G (2013) Understorey fire frequency and the fate of burned forests in southern Amazonia. Philos Trans R Soc B Biol Sci 368:20120163

    Article  Google Scholar 

  • Motta V (2019) Estimating Poisson pseudo-maximum-likelihood rather than log-linear model of a log-transformed dependent variable. RAUSP Manag J 54:508–518

    Article  Google Scholar 

  • Moutinho S (2022) After Lula’s win, ‘a huge relief!’ Science 378:464–464. https://doi.org/10.1126/science.adf6054

    Article  Google Scholar 

  • Mu Y, Biggs TW, De Sales F (2021) Forests mitigate drought in an agricultural region of the Brazilian Amazon: atmospheric moisture tracking to identify critical source areas. Geophys Res Lett 48:e2020GL091380

  • Naidoo R, Gerkey D, Hole D, Pfaff A, Ellis AM, Golden CD, Herrera D, Johnson K, Mulligan M, Ricketts TH, Fisher B (2019) Evaluating the impacts of protected areas on human well-being across the developing world. Sci Adv 5:eaav3006. https://doi.org/10.1126/sciadv.aav3006

  • NASA (2022) MODIS Collection 6 Hotspot/Active Fire Detections MCD14ML distributed from NASA FIRMS

  • Navrud S (2001) Valuing health impacts from air pollution in Europe. Environ Resour Econ 20:305–329

    Article  Google Scholar 

  • Neidell M (2009) Information, avoidance behavior, and health the effect of ozone on asthma hospitalizations. J Hum Resour 44:450–478. https://doi.org/10.3368/jhr.44.2.450

    Article  Google Scholar 

  • Nelson A, Chomitz KM (2011) Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6:e22722

  • Nepstad DC, Verssimo A, Alencar A, Nobre C, Lima E, Lefebvre P, Schlesinger P, Potter C, Moutinho P, Mendoza E (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–508

    Article  Google Scholar 

  • Nicolella AC, Belluzzo W (2015) The effect of reducing the pre-harvest burning of sugar cane on respiratory health in Brazil. Environ Dev Econ 20:127–140

    Article  Google Scholar 

  • Nicolussi FH, Santos APM dos, André SC da S, Veiga TB, Takayanagui AMM (2014) Air pollution and respiratory allergic diseases in schoolchildren. Rev Saude Publica 48:326–330

  • Nolte C, Agrawal A (2013) Linking management effectiveness indicators to observed effects of protected areas on fire occurrence in the Amazon rainforest. Conserv Biol 27:155–165

    Article  Google Scholar 

  • Nolte C, Agrawal A, Silvius KM, Soares-Filho BS (2013) Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc Natl Acad Sci 110:4956–4961

    Article  Google Scholar 

  • Norris DE (2004) Mosquito-borne diseases as a consequence of land use change. EcoHealth 1:19–24

    Article  Google Scholar 

  • Oliveira U, Soares-Filho BS, Paglia AP, Brescovit AD, De Carvalho CJ, Silva DP, Rezende DT, Leite FSF, Batista JAN, Barbosa JPPP (2017) Biodiversity conservation gaps in the Brazilian protected areas. Sci Rep 7:1–9

    Article  Google Scholar 

  • Ortiz RA, Markandya A, Hunt A (2009) Willingness to pay for mortality risk reduction associated with air pollution in São Paulo. Rev Bras Econ 63:3–22. https://doi.org/10.1590/S0034-71402009000100001

    Article  Google Scholar 

  • Ortiz RA, Hunt A, da Motta RS, MacKnight V (2011) Morbidity costs associated with ambient air pollution exposure in Sao Paulo, Brazil. Atmos Pollut Res 2:520–529. https://doi.org/10.5094/APR.2011.059

    Article  Google Scholar 

  • Pacheco AA, Neves ACO, Fernandes GW (2018) Uneven conservation efforts compromise Brazil to meet the target 11 of convention on biological diversity. Perspect Ecol Conserv 16:43–48

    Google Scholar 

  • Pattanayak SK, Wendland KJ (2007) Nature’s care: diarrhea, watershed protection, and biodiversity conservation in Flores, Indonesia. Biodivers Conserv 16:2801–2819

    Article  Google Scholar 

  • Pattanayak SK, Kramer RA, Vincent JR (2017) Ecosystem change and human health: implementation economics and policy. Philos Trans R Soc B Biol Sci 372:20160130

  • Peterson D, Hyer E, Wang J (2014) Quantifying the potential for high-altitude smoke injection in the North American boreal forest using the standard MODIS fire products and subpixel-based methods. J Geophys Res Atmos 119:3401–3419. https://doi.org/10.1002/2013JD021067

    Article  Google Scholar 

  • Pfaff A, Robalino J, Herrera D, Sandoval C (2015) Protected areas’ impacts on Brazilian amazon deforestation: examining conservation—development interactions to inform planning. PLoS ONE. https://doi.org/10.1371/journal.pone.0129460

    Article  Google Scholar 

  • Pienkowski T, Dickens BL, Sun H, Carrasco LR (2017) Empirical evidence of the public health benefits of tropical forest conservation in Cambodia: a generalised linear mixed-effects model analysis. Lancet Planet Health 1:e180–e187

    Article  Google Scholar 

  • Prado MF do, Antunes BB de P, Bastos L dos SL, Peres IT, Silva A de AB da, Dantas LF, Baião FA, Maçaira P, Hamacher S, Bozza FA (2020) Analysis of COVID-19 under-reporting in Brazil. Rev Bras Ter Intensiva 32:224–228

  • Prist PR, Sangermano F, Bailey A, Bugni V, Villalobos-Segura M del C, Pimiento-Quiroga N, Daszak P, Zambrana-Torrelio C, (2023) Protecting Brazilian Amazon Indigenous territories reduces atmospheric particulates and avoids associated health impacts and costs. Commun Earth Environ 4:34

  • Pullabhotla HK, Souza M (2022) Air pollution from agricultural fires increases hypertension risk. J Environ Econ Manag 115:102723

    Article  Google Scholar 

  • Rangel MA, Vogl TS (2019) Agricultural fires and health at birth. Rev Econ Stat 101:616–630

    Article  Google Scholar 

  • Reddington CL, Butt EW, Ridley DA, Artaxo P, Morgan WT, Coe H, Spracklen DV (2015) Air quality and human health improvements from reductions in deforestation-related fire in Brazil. Nat Geosci 8:768–771. https://doi.org/10.1038/ngeo2535

    Article  Google Scholar 

  • Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT (2016) Critical review of health impacts of wildfire smoke exposure. Environ Health Perspect 124(9):1334–1343

  • Reid CE, Considine EM, Watson GL, Telesca D, Pfister GG, Jerrett M (2019) Associations between respiratory health and ozone and fine particulate matter during a wildfire event. Environ Int 129:291–298

    Article  Google Scholar 

  • Requia WJ, Amini H, Mukherjee R, Gold DR, Schwartz JD (2021) Health impacts of wildfire-related air pollution in Brazil: a nationwide study of more than 2 million hospital admissions between 2008 and 2018. Nat Commun 12:1–9

    Article  Google Scholar 

  • Rocha R, Sant’Anna AA (2022) Winds of fire and smoke: air pollution and health in Brazilian Amazon. World Dev 151:105722

    Article  Google Scholar 

  • Rochedo PR, Soares-Filho B, Schaeffer R, Viola E, Szklo A, Lucena AF, Koberle A, Davis JL, Rajão R, Rathmann R (2018) The threat of political bargaining to climate mitigation in Brazil. Nat Clim Change 8:695–698

    Article  Google Scholar 

  • Rosales-Rueda M, Triyana M (2019) The persistent effects of early-life exposure to air pollution evidence from the Indonesian forest fires. J Hum Resour 54:1037–1080. https://doi.org/10.3368/jhr.54.4.0117.8497R1

    Article  Google Scholar 

  • Sarnat SE, Raysoni AU, Li W-W, Holguin F, Johnson BA, Luevano SF, Garcia JH, Sarnat JA (2012) Air pollution and acute respiratory response in a panel of asthmatic children along the US–Mexico border. Environ Health Perspect 120:437–444

    Article  Google Scholar 

  • Schägner JP, Brander L, Paracchini ML, Maes J, Gollnow F, Bertzky B (2018) Spatial dimensions of recreational ecosystem service values: A review of meta-analyses and a combination of meta-analytic value-transfer and GIS. Ecosyst. Serv Assess Valuat Recreat Ecosyst Serv 31:395–409. https://doi.org/10.1016/j.ecoser.2018.03.003

    Article  Google Scholar 

  • Schlenker W, Walker WR (2016) Airports, air pollution, and contemporaneous health. Rev Econ Stud 83:768–809

    Article  Google Scholar 

  • Sheldon TL, Sankaran C (2017) The impact of Indonesian forest fires on Singaporean pollution and health. Am Econ Rev 107:526–529. https://doi.org/10.1257/aer.p20171134

    Article  Google Scholar 

  • Shi T, McAllister DA, O’Brien KL, Simoes EA, Madhi SA, Gessner BD, Polack FP, Balsells E, Acacio S, Aguayo C (2017) Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. The Lancet 390:946–958

    Article  Google Scholar 

  • Silva JS, Tenreyro S (2006) The log of gravity. Rev Econ Stat 88:641–658

    Article  Google Scholar 

  • Silva LL, Carvalho Dutra A de, Andrade L de, Iora PH, Rodrigues Ramajo GL, Peres Gualda IA, Costa Scheidt JFH, Vasconcelos Maia do Amaral P, Hernandes Rocha TA, Staton CA (2021) Emergency care gap in Brazil: geographical accessibility as a proxy of response capacity to tackle COVID-19. Front Public Health 9:740284

  • Sims KRE (2010) Conservation and development: evidence from Thai protected areas. J Environ Econ Manag 60:94–114

    Article  Google Scholar 

  • Singh P, Dey S, Chowdhury S, Bali K (2019) Early life exposure to outdoor air pollution: effect on child health in India

  • Smith LT, Aragão LEOC, Sabel CE, Nakaya T (2014) Drought impacts on children’s respiratory health in the Brazilian Amazon. Sci Rep 4:1–8. https://doi.org/10.1038/srep03726

    Article  Google Scholar 

  • Soares-Filho B, Moutinho P, Nepstad D, Anderson A, Rodrigues H, Garcia R, Dietzsch L, Merry F, Bowman M, Hissa L, Silvestrini R, Maretti C (2010) Role of Brazilian Amazon protected areas in climate change mitigation. Proc Natl Acad Sci 107:10821–10826. https://doi.org/10.1073/pnas.0913048107

    Article  Google Scholar 

  • Souto-Oliveira CE, Marques MT, Nogueira T, Lopes FJ, Medeiros JA, Medeiros IM, Moreira GA, da Silva Dias PL, Landulfo E, Andrade M de F (2023) Impact of extreme wildfires from the Brazilian Forests and sugarcane burning on the air quality of the biggest megacity on South America. Sci Total Environ 66:163439

  • Strand J, Soares-Filho B, Costa MH, Oliveira U, Ribeiro SC, Pires GF, Oliveira A, Rajão R, May P, van der Hoff R, Siikamäki J, da Motta RS, Toman M (2018) Spatially explicit valuation of the Brazilian Amazon Forest’s Ecosystem Services. Nat Sustain 1:657–664. https://doi.org/10.1038/s41893-018-0175-0

    Article  Google Scholar 

  • Tan Soo J-S (2018) Valuing air quality in Indonesia using households’ locational choices. Environ Resour Econ 71:755–776. https://doi.org/10.1007/s10640-017-0182-z

    Article  Google Scholar 

  • Tan-Soo J-S, Pattanayak SK (2019) Seeking natural capital projects: forest fires, haze, and early-life exposure in Indonesia. Proc Natl Acad Sci 116:5239–5245

    Article  Google Scholar 

  • United Nations (1992) Convention on biological diversity

  • Vadrevu KP, Lasko K, Giglio L, Justice C (2015) Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia. Environ Res Lett 10:105003. https://doi.org/10.1088/1748-9326/10/10/105003

    Article  Google Scholar 

  • Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, Abbasi-Kangevari M, Abbastabar H, Abd-Allah F, Abdelalim A (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet 396:1204–1222

    Article  Google Scholar 

  • Walker WS, Gorelik SR, Baccini A, Aragon-Osejo JL, Josse C, Meyer C, Macedo MN, Augusto C, Rios S, Katan T (2020) The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proc Natl Acad Sci 117:3015–3025

    Article  Google Scholar 

  • Walker K, Flores-Anderson A, Villa L, Griffin R, Finer M, Herndon K (2022) An analysis of fire dynamics in and around indigenous territories and protected areas in a Brazilian agricultural frontier. Environ Res Lett 17:084030. https://doi.org/10.1088/1748-9326/ac8237

    Article  Google Scholar 

  • Watson JE, Dudley N, Segan DB, Hockings M (2014) The performance and potential of protected areas. Nature 515:67–73

    Article  Google Scholar 

  • West TA, Fearnside PM (2021) Brazil’s conservation reform and the reduction of deforestation in Amazonia. Land Use Policy 100:105072

    Article  Google Scholar 

  • West TA, Caviglia-Harris JL, Martins FS, Silva DE, Börner J (2022) Potential conservation gains from improved protected area management in the Brazilian Amazon. Biol Conserv 269:109526

    Article  Google Scholar 

  • Wolff S, Schulp CJE, Kastner T, Verburg PH (2017) Quantifying spatial variation in ecosystem services demand: a global mapping approach. Ecol Econ 136:14–29. https://doi.org/10.1016/j.ecolecon.2017.02.005

    Article  Google Scholar 

  • World Health Organization (2016) Ambient air pollution: a global assessment of exposure and burden of disease

  • World Health Organization (2021) WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization

  • Wu Xi, Shi W, Guo B, Tao F (2020a) Large spatial variations in the distributions of and factors affecting forest water retention capacity in China. Ecol Indic 113:106152. https://doi.org/10.1016/j.ecolind.2020.106152

    Article  Google Scholar 

  • Wu Y, Mullan K, Biggs T, Caviglia-Harris J, Harris DW, Sills EO (2021) Do forests provide watershed services for farmers in the humid tropics? Evidence from the Brazilian Amazon. Ecol Econ 183:106965

    Article  Google Scholar 

  • Wu X, Nethery RC, Sabath MB, Braun D, Dominici F (2020b) Exposure to air pollution and COVID-19 mortality in the United States: a nationwide cross-sectional study. MedRxiv

  • You X, Cao X, Guo Y, Wang D, Qiu W, Zhou C, Zhou M, Chen W, Zhang X (2023) Associations between short-term PM2.5 exposure and daily hospital admissions for circulatory system diseases in Ganzhou, China: a time series study. Front Public Health 11:785

    Article  Google Scholar 

Download references

Funding

The authors received funding for this work through the following awards: National Institute for General Medical Sciences—P20GM130418; NSF Directorate of Biomedical Sciences—CNH1825046; University of Montana—UGP2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrina Mullan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest relating to this work.

Human and Animal Rights Statement

The research did not involve human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheehan, D., Mullan, K., West, T.A.P. et al. Protecting Life and Lung: Protected Areas Affect Fine Particulate Matter and Respiratory Hospitalizations in the Brazilian Amazon Biome. Environ Resource Econ 87, 45–87 (2024). https://doi.org/10.1007/s10640-023-00813-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10640-023-00813-2

Keywords

Navigation