Skip to main content
Log in

Combination of ruxolitinib with ABT-737 exhibits synergistic effects in cells carrying concurrent JAK2V617F and ASXL1 mutations

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The V617F mutation in Janus kinase 2 is considered one of the driver mutations leading to Philadelphia-negative myeloproliferative neoplasms (MPNs). Concurrent JAK2V617F and ASXL1 mutations accelerate the progression of myelofibrosis in patients with MPNs. Few therapies are currently available for patients with these two mutations. In our study, the combination of ruxolitinib with ABT-737 was evaluated in cells carrying JAK2V617F and ASXL1 double mutations. RNA sequencing indicated overactivated oxidative phosphorylation in JAK2V617F;Asxl1+/- cKit+ cells. The cell line model with JAK2V617F and ASXL1 double mutations (HEL-AKO cells) also exhibited dysregulated mitochondrial function with an increase in the reactive oxygen species levels and a decrease in the ATP levels. The colony growth inhibition rates of cells with JAK2V617F and ASXL1 double mutations were significantly lower than those of cells with only the JAK2V617F mutation. Combined treatment with ruxolitinib and ABT-737 promoted apoptosis and inhibited the proliferation of HEL-AKO cells. Cotreatment with the two drugs also inhibited the growth of bone marrow mononuclear cells isolated from patients with concurrent JAK2V617F and ASXL1 mutations. In conclusion, we provide preclinical evidence showing that the combination of ruxolitinib and ABT-737 is a promising therapeutic strategy for MPN patients with concurrent JAK2V617F and ASXL1 mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391–2405. https://doi.org/10.1182/blood-2016-03-643544

    Article  CAS  PubMed  Google Scholar 

  2. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N, Scott MA, Erber WN, Green AR (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. The Lancet 365:1054–1061. https://doi.org/10.1016/s0140-6736(05)71142-9

    Article  CAS  Google Scholar 

  3. Brecqueville M, Rey J, Bertucci F, Coppin E, Finetti P, Carbuccia N, Cervera N, Gelsi-Boyer V, Arnoulet C, Gisserot O, Verrot D, Slama B, Vey N, Mozziconacci MJ, Birnbaum D, Murati A (2012) Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms. Genes Chromosomes Cancer 51:743–755. https://doi.org/10.1002/gcc.21960

    Article  CAS  PubMed  Google Scholar 

  4. Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, Finke C, Score J, Gangat N, Mannarelli C, Ketterling RP, Rotunno G, Knudson RA, Susini MC, Laborde RR, Spolverini A, Pancrazzi A, Pieri L, Manfredini R, Tagliafico E, Zini R, Jones A, Zoi K, Reiter A, Duncombe A, Pietra D, Rumi E, Cervantes F, Barosi G, Cazzola M, Cross NCP, Tefferi A (2013) Mutations and prognosis in primary myelofibrosis. Leukemia 27:1861–1869. https://doi.org/10.1038/leu.2013.119

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y-H, Lin C-C, Lee S-H, Tsai C-H, Wu S-J, Hou H-A, Huang T-C, Kuo Y-Y, Yao M, Chang K, Lin C-W, Lin Y-C, Tien F-M, Chou W-C, Tang J-L, Tien H-F (2020) ASXL1 mutation confers poor prognosis in primary myelofibrosis patients with low JAK2V617F allele burden but not in those with high allele burden. Blood Cancer J 10:99. https://doi.org/10.1038/s41408-020-00364-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Guo Y, Zhou Y, Yamatomo S, Yang H, Zhang P, Chen S, Nimer SD, Zhao ZJ, Xu M, Bai J, Yang FC (2019) ASXL1 alteration cooperates with JAK2V617F to accelerate myelofibrosis. Leukemia 33:1287–1291. https://doi.org/10.1038/s41375-018-0347-y

    Article  PubMed  Google Scholar 

  7. Tefferi A (2012) JAK inhibitors for myeloproliferative neoplasms: clarifying facts from myths. Blood 119:2721–2730. https://doi.org/10.1182/blood-2011-11-395228

    Article  CAS  PubMed  Google Scholar 

  8. Palandri F, Bartoletti D, Iurlo A, Bonifacio M, Abruzzese E, Caocci G, Elli EM, Auteri G, Tiribelli M, Polverelli N, Miglino M, Heidel FH, Tieghi A, Benevolo G, Beggiato E, Fava C, Cavazzini F, Pugliese N, Binotto G, Bosi C, Martino B, Crugnola M, Ottaviani E, Micucci G, Trawinska MM, Cuneo A, Bocchia M, Krampera M, Pane F, Lemoli RM, Cilloni D, Vianelli N, Cavo M, Palumbo GA, Breccia M (2022) Peripheral blasts are associated with responses to ruxolitinib and outcomes in patients with chronic-phase myelofibrosis. Cancer 128:2449–2454. https://doi.org/10.1002/cncr.34216

    Article  CAS  PubMed  Google Scholar 

  9. Masarova L, Bose P, Pemmaraju N, Daver NG, Zhou L, Pierce S, Sasaki K, Kantarjian HM, Estrov Z, Verstovsek S (2020) Prognostic value of blasts in peripheral blood in myelofibrosis in the ruxolitinib era. Cancer 126:4322–4331. https://doi.org/10.1002/cncr.33094

    Article  CAS  PubMed  Google Scholar 

  10. Palandri F, Breccia M, Bonifacio M, Polverelli N, Elli EM, Benevolo G, Tiribelli M, Abruzzese E, Iurlo A, Heidel FH, Bergamaschi M, Tieghi A, Crugnola M, Cavazzini F, Binotto G, Isidori A, Sgherza N, Bosi C, Martino B, Latagliata R, Auteri G, Scaffidi L, Griguolo D, Trawinska M, Cattaneo D, Catani L, Krampera M, Lemoli RM, Cuneo A, Semenzato G, Foà R, Di Raimondo F, Bartoletti D, Cavo M, Palumbo GA, Vianelli N (2020) Life after ruxolitinib: Reasons for discontinuation, impact of disease phase, and outcomes in 218 patients with myelofibrosis. Cancer 126:1243–1252. https://doi.org/10.1002/cncr.32664

    Article  CAS  PubMed  Google Scholar 

  11. Kuykendall AT, Shah S, Talati C, Al Ali N, Sweet K, Padron E, Sallman DA, Lancet JE, List AF, Zuckerman KS, Komrokji RS (2018) Between a rux and a hard place: evaluating salvage treatment and outcomes in myelofibrosis after ruxolitinib discontinuation. Ann Hematol 97:435–441. https://doi.org/10.1007/s00277-017-3194-4

    Article  CAS  PubMed  Google Scholar 

  12. Durrant ST, Nagler A, Guglielmelli P, Lavie D, le Coutre P, Gisslinger H, Chuah C, Maffioli M, Bharathy S, Dong T, Wroclawska M, Lopez JM (2019) Results from HARMONY: an open-label, multicenter, 2-arm, phase 1b, dose-finding study assessing the safety and efficacy of the oral combination of ruxolitinib and buparlisib in patients with myelofibrosis. Haematologica 104:e551–e554. https://doi.org/10.3324/haematol.2018.209965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tefferi A, Lasho TL, Begna KH, Patnaik MM, Zblewski DL, Finke CM, Laborde RR, Wassie E, Schimek L, Hanson CA, Gangat N, Wang X, Pardanani A (2015) A Pilot Study of the Telomerase Inhibitor Imetelstat for Myelofibrosis. N Engl J Med 373:908–919. https://doi.org/10.1056/NEJMoa1310523

    Article  CAS  PubMed  Google Scholar 

  14. Fan Z, Yu H, Cui N, Kong X, Liu X, Chang Y, Wu Y, Sun L, Wang G (2015) ABT737 enhances cholangiocarcinoma sensitivity to cisplatin through regulation of mitochondrial dynamics. Exp Cell Res 335:68–81. https://doi.org/10.1016/j.yexcr.2015.04.016

    Article  CAS  PubMed  Google Scholar 

  15. High LM, Szymanska B, Wilczynska-Kalak U, Barber N, O’Brien R, Khaw SL, Vikstrom IB, Roberts AW, Lock RB (2010) The Bcl-2 homology domain 3 mimetic ABT-737 targets the apoptotic machinery in acute lymphoblastic leukemia resulting in synergistic in vitro and in vivo interactions with established drugs. Mol Pharmacol 77:483–494. https://doi.org/10.1124/mol.109.060780

    Article  CAS  PubMed  Google Scholar 

  16. Kuroda J, Kimura S, Andreeff M, Ashihara E, Kamitsuji Y, Yokota A, Kawata E, Takeuchi M, Tanaka R, Murotani Y, Matsumoto Y, Tanaka H, Strasser A, Taniwaki M, Maekawa T (2008) ABT-737 is a useful component of combinatory chemotherapies for chronic myeloid leukaemias with diverse drug-resistance mechanisms. Br J Haematol 140:181–190. https://doi.org/10.1111/j.1365-2141.2007.06899.x

    Article  CAS  PubMed  Google Scholar 

  17. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121. https://doi.org/10.1016/j.cell.2005.05.026

    Article  CAS  PubMed  Google Scholar 

  18. Laje P, Zoltick PW, Flake AW (2010) SLAM-enriched hematopoietic stem cells maintain long-term repopulating capacity after lentiviral transduction using an abbreviated protocol. Gene Ther 17:412–418. https://doi.org/10.1038/gt.2009.138

    Article  CAS  PubMed  Google Scholar 

  19. Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S, Deng X, Zhai D, Shi YX, Sneed T, Verhaegen M, Soengas M, Ruvolo VR, McQueen T, Schober WD, Watt JC, Jiffar T, Ling X, Marini FC, Harris D, Dietrich M, Estrov Z, McCubrey J, May WS, Reed JC, Andreeff M (2006) Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10:375–388. https://doi.org/10.1016/j.ccr.2006.10.006

    Article  CAS  PubMed  Google Scholar 

  20. Stivala S, Codilupi T, Brkic S, Baerenwaldt A, Ghosh N, Hao-Shen H, Dirnhofer S, Dettmer MS, Simillion C, Kaufmann BA, Chiu S, Keller M, Kleppe M, Hilpert M, Buser AS, Passweg JR, Radimerski T, Skoda RC, Levine RL, Meyer SC (2019) Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. J Clin Invest 129:1596–1611. https://doi.org/10.1172/jci98785

    Article  PubMed  PubMed Central  Google Scholar 

  21. James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, Garçon L, Raslova H, Berger R, Bennaceur-Griscelli A, Villeval JL, Constantinescu SN, Casadevall N, Vainchenker W (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148. https://doi.org/10.1038/nature03546

    Article  CAS  PubMed  Google Scholar 

  22. Tetsu O, Phuchareon J, Eisele DW, Hangauer MJ, McCormick F (2015) AKT inactivation causes persistent drug tolerance to EGFR inhibitors. Pharmacol Res 102:132–137. https://doi.org/10.1016/j.phrs.2015.09.022

    Article  CAS  PubMed  Google Scholar 

  23. Vainchenker W, Constantinescu SN (2013) JAK/STAT signaling in hematological malignancies. Oncogene 32:2601–2613. https://doi.org/10.1038/onc.2012.347

    Article  CAS  PubMed  Google Scholar 

  24. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, Adelsperger J, Koo S, Lee JC, Gabriel S, Mercher T, D’Andrea A, Fröhling S, Döhner K, Marynen P, Vandenberghe P, Mesa RA, Tefferi A, Griffin JD, Eck MJ, Sellers WR, Meyerson M, Golub TR, Lee SJ, Gilliland DG (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397. https://doi.org/10.1016/j.ccr.2005.03.023

    Article  CAS  PubMed  Google Scholar 

  25. Tam CS, Nussenzveig RM, Popat U, Bueso-Ramos CE, Thomas DA, Cortes JA, Champlin RE, Ciurea SE, Manshouri T, Pierce SM, Kantarjian HM, Verstovsek S (2008) The natural history and treatment outcome of blast phase BCR-ABL− myeloproliferative neoplasms. Blood 112:1628–1637. https://doi.org/10.1182/blood-2008-02-138230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S, Van Dyke D, Hanson C, Wu W, Pardanani A, Cervantes F, Passamonti F, Tefferi A (2011) DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 29:392–397. https://doi.org/10.1200/jco.2010.32.2446

    Article  PubMed  Google Scholar 

  27. Yogarajah M, Tefferi A (2017) Leukemic Transformation in Myeloproliferative Neoplasms: A Literature Review on Risk, Characteristics, and Outcome. Mayo Clin Proc 92:1118–1128. https://doi.org/10.1016/j.mayocp.2017.05.010

    Article  CAS  PubMed  Google Scholar 

  28. Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH, Pandey S, Patel JP, Chung YR, Koche R, Perna F, Zhao X, Taylor JE, Park CY, Carroll M, Melnick A, Nimer SD, Jaffe JD, Aifantis I, Bernstein BE, Levine RL (2012) ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 22:180–193. https://doi.org/10.1016/j.ccr.2012.06.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carbuccia N, Murati A, Trouplin V, Brecqueville M, Adélaïde J, Rey J, Vainchenker W, Bernard OA, Chaffanet M, Vey N, Birnbaum D, Mozziconacci MJ (2009) Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia 23:2183–2186. https://doi.org/10.1038/leu.2009.141

    Article  CAS  PubMed  Google Scholar 

  30. Thol F, Friesen I, Damm F, Yun H, Weissinger EM, Krauter J, Wagner K, Chaturvedi A, Sharma A, Wichmann M, Göhring G, Schumann C, Bug G, Ottmann O, Hofmann WK, Schlegelberger B, Heuser M, Ganser A (2011) Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol 29:2499–2506. https://doi.org/10.1200/jco.2010.33.4938

    Article  CAS  PubMed  Google Scholar 

  31. Abdel-Wahab O, Manshouri T, Patel J, Harris K, Yao J, Hedvat C, Heguy A, Bueso-Ramos C, Kantarjian H, Levine RL, Verstovsek S (2010) Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res 70:447–452. https://doi.org/10.1158/0008-5472.Can-09-3783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koppikar P, Bhagwat N, Kilpivaara O, Manshouri T, Adli M, Hricik T, Liu F, Saunders LM, Mullally A, Abdel-Wahab O, Leung L, Weinstein A, Marubayashi S, Goel A, Gönen M, Estrov Z, Ebert BL, Chiosis G, Nimer SD, Bernstein BE, Verstovsek S, Levine RL (2012) Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature 489:155–159. https://doi.org/10.1038/nature11303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bhagwat N, Koppikar P, Keller M, Marubayashi S, Shank K, Rampal R, Qi J, Kleppe M, Patel HJ, Shah SK, Taldone T, Bradner JE, Chiosis G, Levine RL (2014) Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms. Blood 123:2075–2083. https://doi.org/10.1182/blood-2014-01-547760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bohl SR, Bullinger L, Rücker FG (2018) Epigenetic therapy: azacytidine and decitabine in acute myeloid leukemia. Expert Rev Hematol 11:361–371. https://doi.org/10.1080/17474086.2018.1453802

    Article  CAS  PubMed  Google Scholar 

  35. Montalban-Bravo G, DiNardo CD (2018) The role of IDH mutations in acute myeloid leukemia. Future Oncol 14:979–993. https://doi.org/10.2217/fon-2017-0523

    Article  CAS  PubMed  Google Scholar 

  36. Patel AA, Cahill K, Charnot-Katsikas A, Liu H, Gurbuxani S, Thirman M, Kosuri S, Artz AS, Larson RA, Stock W, Segal J, Odenike O (2020) Clinical outcomes of IDH2-mutated advanced-phase Ph-negative myeloproliferative neoplasms treated with enasidenib. Br J Haematol 190:e48–e51. https://doi.org/10.1111/bjh.16709

    Article  CAS  PubMed  Google Scholar 

  37. Silva M, Richard C, Benito A, Sanz C, Olalla I, Fernández-Luna JL (1998) Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N Engl J Med 338:564–571. https://doi.org/10.1056/nejm199802263380902

    Article  CAS  PubMed  Google Scholar 

  38. Garçon L, Rivat C, James C, Lacout C, Camara-Clayette V, Ugo V, Lecluse Y, Bennaceur-Griscelli A, Vainchenker W (2006) Constitutive activation of STAT5 and Bcl-xL overexpression can induce endogenous erythroid colony formation in human primary cells. Blood 108:1551–1554. https://doi.org/10.1182/blood-2005-10-009514

    Article  CAS  PubMed  Google Scholar 

  39. Coultas L, Strasser A (2003) The role of the Bcl-2 protein family in cancer. Seminars in Cancer Biol 13:115–123. https://doi.org/10.1016/S1044-579X(02)00129-3

  40. Chauncey TR (2001) Drug resistance mechanisms in acute leukemia. Curr Op Oncol 13

  41. Nuessler V, Stötzer O, Gullis E, Pelka-Fleischer R, Pogrebniak A, Gieseler F, Wilmanns W (1999) Bcl-2, bax and bcl-xL expression in human sensitive and resistant leukemia cell lines. Leukemia 13:1864–1872. https://doi.org/10.1038/sj.leu.2401571

    Article  CAS  PubMed  Google Scholar 

  42. Tognon R, Gasparotto EP, Neves RP, Nunes NS, Ferreira AF, Palma PV, Kashima S, Covas DT, Santana M, Souto EX, Zanichelli MA, Simões BP, de Souza AM, Castro FA (2012) Deregulation of apoptosis-related genes is associated with PRV1 overexpression and JAK2 V617F allele burden in Essential Thrombocythemia and Myelofibrosis. J Hematol Oncol 5:2. https://doi.org/10.1186/1756-8722-5-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zeuner A, Pedini F, Francescangeli F, Signore M, Girelli G, Tafuri A, De Maria R (2009) Activity of the BH3 mimetic ABT-737 on polycythemia vera erythroid precursor cells. Blood 113:1522–1525. https://doi.org/10.1182/blood-2008-03-143321

    Article  CAS  PubMed  Google Scholar 

  44. Jones CL, Stevens BM, Pollyea DA, Culp-Hill R, Reisz JA, Nemkov T, Gehrke S, Gamboni F, Krug A, Winters A, Pei S, Gustafson A, Ye H, Inguva A, Amaya M, Minhajuddin M, Abbott D, Becker MW, DeGregori J, Smith CA, D’Alessandro A, Jordan CT (2020) Nicotinamide Metabolism Mediates Resistance to Venetoclax in Relapsed Acute Myeloid Leukemia Stem Cells. Cell Stem Cell 27(748–764):e4. https://doi.org/10.1016/j.stem.2020.07.021

    Article  CAS  Google Scholar 

  45. Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, Cortes J, DeAngelo DJ, Debose L, Mu H, Döhner H, Gaidzik VI, Galinsky I, Golfman LS, Haferlach T, Harutyunyan KG, Hu J, Leverson JD, Marcucci G, Müschen M, Newman R, Park E, Ruvolo PP, Ruvolo V, Ryan J, Schindela S, Zweidler-McKay P, Stone RM, Kantarjian H, Andreeff M, Konopleva M, Letai AG (2014) Selective BCL-2 Inhibition by ABT-199 Causes On-Target Cell Death in Acute Myeloid Leukemia. Cancer Discov 4:362–375. https://doi.org/10.1158/2159-8290.Cd-13-0609

    Article  CAS  PubMed  Google Scholar 

  46. Rahmani NE, Ramachandra N, Sahu S, Gitego N, Lopez A, Pradhan K, Bhagat TD, Gordon-Mitchell S, Pena BR, Kazemi M, Rao K, Giricz O, Maqbool SB, Olea R, Zhao Y, Zhang J, Dolatshad H, Tittrea V, Tatwavedi D, Singh S, Lee J, Sun T, Steidl U, Shastri A, Inoue D, Abdel-Wahab O, Pellagatti A, Gavathiotis E, Boultwood J, Verma A (2021) ASXL1 mutations are associated with distinct epigenomic alterations that lead to sensitivity to venetoclax and azacytidine. Blood Cancer J 11:157. https://doi.org/10.1038/s41408-021-00541-0

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fujino T, Goyama S, Sugiura Y, Inoue D, Asada S, Yamasaki S, Matsumoto A, Yamaguchi K, Isobe Y, Tsuchiya A, Shikata S, Sato N, Morinaga H, Fukuyama T, Tanaka Y, Fukushima T, Takeda R, Yamamoto K, Honda H, Nishimura EK, Furukawa Y, Shibata T, Abdel-Wahab O, Suematsu M, Kitamura T (2021) Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway. Nat Commun 12:1826. https://doi.org/10.1038/s41467-021-22053-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xia YK, Zeng YR, Zhang ML, Liu P, Liu F, Zhang H, He CX, Sun YP, Zhang JY, Zhang C, Song L, Ding C, Tang YJ, Yang Z, Yang C, Wang P, Guan KL, Xiong Y, Ye DA-O (2021) Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network. Protein Cell 12(7):557–577. https://doi.org/10.1007/s13238-020-00754-2

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by National Key Research and Development Program of China (grant number 2020YFE0203000); National Natural Science Foundation of China (grant numbers 81970120, 81770128, 81900249); Natural Science Foundation of Hebei Province (H2020206003); Key Project of Science and Technology Research Project of Hebei Universities (ZD2021069).

Author information

Authors and Affiliations

Authors

Contributions

JJY and YZ designed the study. JJY and JZS performed the experiments. JJY, CC, JY and YZ discussed and analyzed the data. JJY, XL, JY and YZ drafted the manuscript. JB analyzed the patients’ information. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Jing Yang or Yuan Zhou.

Ethics declarations

Ethical approval

Ethical approval for this project was obtained from the Ethics Committee of Blood Diseases Hospital, Chinese Academy of Medical Sciences. Four patient samples were collected and processed immediately after bone marrow puncture. Written informed consent was obtained according to the Declaration of Helsinki.

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose. The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1836 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Song, J., Chen, C. et al. Combination of ruxolitinib with ABT-737 exhibits synergistic effects in cells carrying concurrent JAK2V617F and ASXL1 mutations. Invest New Drugs 40, 1194–1205 (2022). https://doi.org/10.1007/s10637-022-01297-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-022-01297-5

Keywords

Navigation