Skip to main content
Log in

TAS-119, a novel selective Aurora A and TRK inhibitor, exhibits antitumor efficacy in preclinical models with deregulated activation of the Myc, β-Catenin, and TRK pathways

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Aurora kinase A, a mitotic kinase that is overexpressed in various cancers, is a promising cancer drug target. Here, we performed preclinical characterization of TAS-119, a novel, orally active, and highly selective inhibitor of Aurora A. TAS-119 showed strong inhibitory effect against Aurora A, with an IC50 value of 1.04 nmol/L. The compound was highly selective for Aurora A compared with 301 other protein kinases, including Aurora kinase B. TAS-119 induced the inhibition of Aurora A and accumulation of mitotic cells in vitro and in vivo. It suppressed the growth of various cancer cell lines harboring MYC family amplification and CTNNB1 mutation in vitro. In a xenograft model of human lung cancer cells harboring MYC amplification and CTNNB1 mutation, TAS-119 showed a strong antitumor activity at well-tolerated doses. TAS-119 induced N-Myc degradation and inhibited downstream transcriptional targets in MYCN-amplified neuroblastoma cell lines. It also demonstrated inhibitory effect against tropomyosin receptor kinase (TRK)A, TRKB, and TRKC, with an IC50 value of 1.46, 1.53, and 1.47 nmol/L, respectively. TAS-119 inhibited TRK-fusion protein activity and exhibited robust growth inhibition of tumor cells via a deregulated TRK pathway in vitro and in vivo. Our study indicates the potential of TAS-119 as an anticancer drug, especially for patients harboring MYC amplification, CTNNB1 mutation, and NTRK fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data generated or analyzed during this study are stored at Taiho Pharmaceutical Co., Ltd. and are not publicly available. Inquiries for data access may be sent to the corresponding author.

References

  1. Mountzios G, Terpos E, Dimopoulos MA (2008) Aurora kinases as targets for cancer therapy. Cancer Treat Rev 34(2):175–182. https://doi.org/10.1016/j.ctrv.2007.09.005

    Article  CAS  PubMed  Google Scholar 

  2. Vader G, Lens SM (2008) The Aurora kinase family in cell division and cancer. Biochim Biophys Acta 1786(1):60–72. https://doi.org/10.1016/j.bbcan.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  3. Du J, Hannon GJ (2004) Suppression of p160ROCK bypasses cell cycle arrest after Aurora-a/STK15 depletion. Proc Natl Acad Sci U S A 101(24):8975–8980. https://doi.org/10.1073/pnas.0308484101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ruchaud S, Carmena M, Earnshaw WC (2007) Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8(10):798–812. https://doi.org/10.1038/nrm2257

    Article  CAS  PubMed  Google Scholar 

  5. Garcia-Rodriguez LJ, Kasciukovic T, Denninger V, Tanaka TU (2019) Aurora B-INCENP localization at centromeres/inner kinetochores is required for chromosome bi-orientation in budding yeast. Curr Biol 29(9):1536–1544 e1534. https://doi.org/10.1016/j.cub.2019.03.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vader G, Maia AF, Lens SM (2008) The chromosomal passenger complex and the spindle assembly checkpoint: kinetochore-microtubule error correction and beyond. Cell Div 3:10. https://doi.org/10.1186/1747-1028-3-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang W, Xia D, Li Z, Zhou T, Chen T, Wu Z, Zhou W, Li Z, Li L, Xu J (2019) Aurora-a/ERK1/2/mTOR axis promotes tumor progression in triple-negative breast cancer and dual-targeting Aurora-a/mTOR shows synthetic lethality. Cell Death Dis 10(8):606. https://doi.org/10.1038/s41419-019-1855-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang XX, Liu R, Jin SQ, Fan FY, Zhan QM (2006) Overexpression of Aurora-a kinase promotes tumor cell proliferation and inhibits apoptosis in esophageal squamous cell carcinoma cell line. Cell Res 16(4):356–366. https://doi.org/10.1038/sj.cr.7310046

    Article  CAS  PubMed  Google Scholar 

  9. Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T, Graham JA, Demur C, Hercend T, Diu-Hercend A, Su M, Golec JM, Miller KM (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10(3):262–267. https://doi.org/10.1038/nm1003

    Article  CAS  PubMed  Google Scholar 

  10. Carpinelli P, Ceruti R, Giorgini ML, Cappella P, Gianellini L, Croci V, Degrassi A, Texido G, Rocchetti M, Vianello P, Rusconi L, Storici P, Zugnoni P, Arrigoni C, Soncini C, Alli C, Patton V, Marsiglio A, Ballinari D, Pesenti E, Fancelli D, Moll J (2007) PHA-739358, a potent inhibitor of Aurora kinases with a selective target inhibition profile relevant to cancer. Mol Cancer Ther 6(12 Pt 1):3158–3168. https://doi.org/10.1158/1535-7163.MCT-07-0444

    Article  CAS  PubMed  Google Scholar 

  11. Payton M, Bush TL, Chung G, Ziegler B, Eden P, McElroy P, Ross S, Cee VJ, Deak HL, Hodous BL, Nguyen HN, Olivieri PR, Romero K, Schenkel LB, Bak A, Stanton M, Dussault I, Patel VF, Geuns-Meyer S, Radinsky R, Kendall RL (2010) Preclinical evaluation of AMG 900, a novel potent and highly selective pan-aurora kinase inhibitor with activity in taxane-resistant tumor cell lines. Cancer Res 70(23):9846–9854. https://doi.org/10.1158/0008-5472.CAN-10-3001

    Article  CAS  PubMed  Google Scholar 

  12. Shimomura T, Hasako S, Nakatsuru Y, Mita T, Ichikawa K, Kodera T, Sakai T, Nambu T, Miyamoto M, Takahashi I, Miki S, Kawanishi N, Ohkubo M, Kotani H, Iwasawa Y (2010) MK-5108, a highly selective Aurora-a kinase inhibitor, shows antitumor activity alone and in combination with docetaxel. Mol Cancer Ther 9(1):157–166. https://doi.org/10.1158/1535-7163.MCT-09-0609

    Article  CAS  PubMed  Google Scholar 

  13. Maris JM, Morton CL, Gorlick R, Kolb EA, Lock R, Carol H, Keir ST, Reynolds CP, Kang MH, Wu J, Smith MA, Houghton PJ (2010) Initial testing of the aurora kinase a inhibitor MLN8237 by the pediatric preclinical testing program (PPTP). Pediatr Blood Cancer 55(1):26–34. https://doi.org/10.1002/pbc.22430

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gong X, Du J, Parsons SH, Merzoug FF, Webster Y, Iversen PW, Chio LC, Van Horn RD, Lin X, Blosser W, Han B, Jin S, Yao S, Bian H, Ficklin C, Fan L, Kapoor A, Antonysamy S, Mc Nulty AM, Froning K, Manglicmot D, Pustilnik A, Weichert K, Wasserman SR, Dowless M, Marugan C, Baquero C, Lallena MJ, Eastman SW, Hui YH, Dieter MZ, Doman T, Chu S, Qian HR, Ye XS, Barda DA, Plowman GD, Reinhard C, Campbell RM, Henry JR, Buchanan SG (2019) Aurora a kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene. Cancer Discov 9(2):248–263. https://doi.org/10.1158/2159-8290.CD-18-0469

    Article  CAS  PubMed  Google Scholar 

  15. Yang J, Ikezoe T, Nishioka C, Tasaka T, Taniguchi A, Kuwayama Y, Komatsu N, Bandobashi K, Togitani K, Koeffler HP, Taguchi H, Yokoyama A (2007) AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo. Blood 110(6):2034–2040. https://doi.org/10.1182/blood-2007-02-073700

    Article  CAS  PubMed  Google Scholar 

  16. Sootome H, Miura A, Masuko N, Suzuki T, Uto Y, Hirai H (2020) Aurora a inhibitor TAS-119 enhances antitumor efficacy of taxanes in vitro and in vivo: preclinical studies as guidance for clinical development and trial design. Mol Cancer Ther 19:1981–1991. https://doi.org/10.1158/1535-7163.MCT-20-0036

    Article  CAS  PubMed  Google Scholar 

  17. Lee YC, Que J, Chen YC, Lin JT, Liou YC, Liao PC, Liu YP, Lee KH, Lin LC, Hsiao M, Hung LY, Huang CY, Lu PJ (2013) Pin1 acts as a negative regulator of the G2/M transition by interacting with the Aurora-A-bora complex. J Cell Sci 126(Pt 21):4862–4872. https://doi.org/10.1242/jcs.121368

    Article  CAS  PubMed  Google Scholar 

  18. Van Hooser A, Goodrich DW, Allis CD, Brinkley BR, Mancini MA (1998) Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation. J Cell Sci 111(Pt 23):3497–3506

    PubMed  Google Scholar 

  19. Gao C, Wang Y, Broaddus R, Sun L, Xue F, Zhang W (2018) Exon 3 mutations of CTNNB1 drive tumorigenesis: a review. Oncotarget 9(4):5492–5508. https://doi.org/10.18632/oncotarget.23695

    Article  PubMed  Google Scholar 

  20. Herold S, Wanzel M, Beuger V, Frohme C, Beul D, Hillukkala T, Syvaoja J, Saluz HP, Haenel F, Eilers M (2002) Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell 10(3):509–521. https://doi.org/10.1016/s1097-2765(02)00633-0

    Article  CAS  PubMed  Google Scholar 

  21. Chen L, Iraci N, Gherardi S, Gamble LD, Wood KM, Perini G, Lunec J, Tweddle DA (2010) p53 is a direct transcriptional target of MYCN in neuroblastoma. Cancer Res 70(4):1377–1388. https://doi.org/10.1158/0008-5472.CAN-09-2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ, O'Connell BC, Mateyak MK, Tam W, Kohlhuber F, Dang CV, Sedivy JM, Eick D, Vogelstein B, Kinzler KW (2000) Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci U S A 97(5):2229–2234. https://doi.org/10.1073/pnas.050586197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pitts TM, Bradshaw-Pierce EL, Bagby SM, Hyatt SL, Selby HM, Spreafico A, Tentler JJ, McPhillips K, Klauck PJ, Capasso A, Diamond JR, Davis SL, Tan AC, Arcaroli JJ, Purkey A, Messersmith WA, Ecsedy JA, Eckhardt SG (2016) Antitumor activity of the aurora a selective kinase inhibitor, alisertib, against preclinical models of colorectal cancer. Oncotarget 7 (31):50290-50301. https://doi.org/10.18632/oncotarget.10366

  24. Cardnell RJ, Li L, Sen T, Bara R, Tong P, Fujimoto J, Ireland AS, Guthrie MR, Bheddah S, Banerjee U, Kalu NN, Fan YH, Dylla SJ, Johnson FM, Wistuba, II, Oliver TG, Heymach JV, Glisson BS, Wang J, Byers LA (2017) Protein expression of TTF1 and cMYC define distinct molecular subgroups of small cell lung cancer with unique vulnerabilities to aurora kinase inhibition, DLL3 targeting, and other targeted therapies. Oncotarget 8 (43):73419–73432. https://doi.org/10.18632/oncotarget.20621

  25. Sos ML, Dietlein F, Peifer M, Schottle J, Balke-Want H, Muller C, Koker M, Richters A, Heynck S, Malchers F, Heuckmann JM, Seidel D, Eyers PA, Ullrich RT, Antonchick AP, Vintonyak VV, Schneider PM, Ninomiya T, Waldmann H, Buttner R, Rauh D, Heukamp LC, Thomas RK (2012) A framework for identification of actionable cancer genome dependencies in small cell lung cancer. Proc Natl Acad Sci U S A 109(42):17034–17039. https://doi.org/10.1073/pnas.1207310109

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brockmann M, Poon E, Berry T, Carstensen A, Deubzer HE, Rycak L, Jamin Y, Thway K, Robinson SP, Roels F, Witt O, Fischer M, Chesler L, Eilers M (2013) Small molecule inhibitors of aurora-a induce proteasomal degradation of N-myc in childhood neuroblastoma. Cancer Cell 24(1):75–89. https://doi.org/10.1016/j.ccr.2013.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dauch D, Rudalska R, Cossa G, Nault JC, Kang TW, Wuestefeld T, Hohmeyer A, Imbeaud S, Yevsa T, Hoenicke L, Pantsar T, Bozko P, Malek NP, Longerich T, Laufer S, Poso A, Zucman-Rossi J, Eilers M, Zender L (2016) A MYC-aurora kinase a protein complex represents an actionable drug target in p53-altered liver cancer. Nat Med 22(7):744–753. https://doi.org/10.1038/nm.4107

    Article  CAS  PubMed  Google Scholar 

  28. Gustafson WC, Meyerowitz JG, Nekritz EA, Chen J, Benes C, Charron E, Simonds EF, Seeger R, Matthay KK, Hertz NT, Eilers M, Shokat KM, Weiss WA (2014) Drugging MYCN through an allosteric transition in Aurora kinase a. Cancer Cell 26(3):414–427. https://doi.org/10.1016/j.ccr.2014.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zaatiti H, Abdallah J, Nasr Z, Khazen G, Sandler A, Abou-Antoun TJ (2018) Tumorigenic proteins upregulated in the MYCN-amplified IMR-32 human neuroblastoma cells promote proliferation and migration. Int J Oncol 52(3):787–803. https://doi.org/10.3892/ijo.2018.4236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O'Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA, Group B-S (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364 (26):2507–2516. https://doi.org/10.1056/NEJMoa1103782

  31. Kopetz S, Desai J, Chan E, Hecht JR, O'Dwyer PJ, Maru D, Morris V, Janku F, Dasari A, Chung W, Issa JP, Gibbs P, James B, Powis G, Nolop KB, Bhattacharya S, Saltz L (2015) Phase II pilot study of Vemurafenib in patients with metastatic BRAF-mutated colorectal Cancer. J Clin Oncol 33(34):4032–4038. https://doi.org/10.1200/JCO.2015.63.2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O'Day CL, Ovechkina Y, Marcoe K, Keyser R, Yoshino K, Nguyen P, Bernards K, Shively R, Hnilo J, Mulligan J, Lin T, Wang S (2010) Profiles of contributing genes to sensitive/resistant phenotypes of 11 different oncology therapeutic agents across 240 cell lines. Paper presented at the AACR 101st Annual Meeting 2010,

  33. Dar AA, Belkhiri A, El-Rifai W (2009) The aurora kinase a regulates GSK-3beta in gastric cancer cells. Oncogene 28(6):866–875. https://doi.org/10.1038/onc.2008.434

    Article  CAS  PubMed  Google Scholar 

  34. Amin M, Minton SE, LoRusso PM, Krishnamurthi SS, Pickett CA, Lunceford J, Hille D, Mauro D, Stein MN, Wang-Gillam A, Trull L, Lockhart AC (2016) A phase I study of MK-5108, an oral aurora a kinase inhibitor, administered both as monotherapy and in combination with docetaxel, in patients with advanced or refractory solid tumors. Investig New Drugs 34(1):84–95. https://doi.org/10.1007/s10637-015-0306-7

    Article  CAS  Google Scholar 

  35. Robbrecht D, Eskens F, Calvo E, He X, Hirai H, Soni N, Cook N, Dowlati A, Fasolo A, Moreno V, Bono JSD (2019) First-in-human phase I and pharmacological study of TAS-119, a selective Aurora a (AurA) kinase inhibitor, in patients (pts) with advanced solid tumors. J Clin Oncol 37(no. 15_supl):3063. https://doi.org/10.1200/JCO.2019.37.15_suppl.3063

  36. Anand S, Penrhyn-Lowe S, Venkitaraman AR (2003) AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3:51–62

    Article  CAS  Google Scholar 

  37. Shah KN, Bhatt R, Rotow J, Rohrberg J, Olivas V, Wang VE, Hemmati G, Martins MM, Maynard A, Kuhn J, Galeas J, Donnella HJ, Kaushik S, Ku A, Dumont S, Krings G, Haringsma HJ, Robillard L, Simmons AD, Harding TC, McCormick F, Goga A, Blakely CM, Bivona TG, Bandyopadhyay S (2019) Aurora kinase a drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer. Nat Med 25(1):111–118. https://doi.org/10.1038/s41591-018-0264-7

    Article  CAS  PubMed  Google Scholar 

  38. Xue JY, Zhao Y, Aronowitz J, Mai TT, Vides A, Qeriqi B, Kim D, Li C, de Stanchina E, Mazutis L, Risso D, Lito P (2020) Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature 577(7790):421–425. https://doi.org/10.1038/s41586-019-1884-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cocco E, Scaltriti M, Drilon A (2018) NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 15(12):731–747. https://doi.org/10.1038/s41571-018-0113-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee SJ, Li GG, Kim ST, Hong ME, Jang J, Yoon N, Ahn SM, Murphy D, Christiansen J, Wei G, Hornby Z, Lee DW, Park JO, Park YS, Lim HY, Hong SN, Kim SH, Kang WK, Park K, Park WY, Kim KM, Lee J (2015) NTRK1 rearrangement in colorectal cancer patients: evidence for actionable target using patient-derived tumor cell line. Oncotarget 6(36):39028–39035. https://doi.org/10.18632/oncotarget.5494

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D, Mahale S, Davies KD, Aisner DL, Pilling AB, Berge EM, Kim J, Sasaki H, Park S, Kryukov G, Garraway LA, Hammerman PS, Haas J, Andrews SW, Lipson D, Stephens PJ, Miller VA, Varella-Garcia M, Janne PA, Doebele RC (2013) Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med 19(11):1469–1472. https://doi.org/10.1038/nm.3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Doebele RC, Davis LE, Vaishnavi A, Le AT, Estrada-Bernal A, Keysar S, Jimeno A, Varella-Garcia M, Aisner DL, Li Y, Stephens PJ, Morosini D, Tuch BB, Fernandes M, Nanda N, Low JA (2015) An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the Tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov 5(10):1049–1057. https://doi.org/10.1158/2159-8290.CD-15-0443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank TAS-119 project members at Tsukuba Research Institute, Taiho Pharmaceutical Co., Ltd., for their support in this work. We thank Cactus Communications K.K. for proofreading the manuscript.

Funding

This study was funded by Taiho Pharmaceutical Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Hiroshi Sootome, Hiroshi Hirai.

Development of methodology: Akihiro Miura, Hiroshi Sootome, and Norio Masuko.

Acquisition of data, animals, materials, and facilities: Akihiro Miura, Hiroshi Sootome, Norio Masuko, Kimihiro Ito, Takamasa Suzuki, and Akihiro Hashimoto.

Analysis and interpretation of data: Naoya Fujita, Hiroto Fukushima, and Shinji Mizuarai.

Writing, reviewing, and/or revising of the manuscript: Akihiro Miura, Hiroshi Hirai, and Yoshihiro Uto.

Administrative, technical, or material support: Akihiro Miura.

Study supervision: Hiroshi Hirai and Hiroshi Sootome.

Other (chemical design and synthesis): Tetsuya Sugimoto, Hidekazu Takahashi, and Morihiro Mitsuya.

Corresponding author

Correspondence to Hiroshi Hirai.

Ethics declarations

Conflict of interests

The authors have no conflicts of interest to disclose.

Ethics approval

All applicable international, national, and/or institutional guidelines concerning the care and use of animals were followed. This article does not contain any studies with human participants.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 941 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miura, A., Sootome, H., Fujita, N. et al. TAS-119, a novel selective Aurora A and TRK inhibitor, exhibits antitumor efficacy in preclinical models with deregulated activation of the Myc, β-Catenin, and TRK pathways. Invest New Drugs 39, 724–735 (2021). https://doi.org/10.1007/s10637-020-01019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-020-01019-9

Keywords

Navigation