Skip to main content

Advertisement

Log in

Targeting c-Met in triple negative breast cancer: preclinical studies using the c-Met inhibitor, Cpd A

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Introduction Triple negative breast cancer (TNBC) represents a heterogeneous subtype of breast cancer that carries a poorer prognosis. There remains a need to identify novel drivers of TNBC, which may represent targets to treat the disease. c-Met overexpression is linked with decreased survival and is associated with the basal subtype of breast cancer. Cpd A, a kinase inhibitor selective/specific for Met kinase has demonstrated preclinical anti-cancer efficacy in TNBC. We aimed to assess the anti-cancer efficacy of Cpd A when combined with Src kinase, ErbB-family or hepatocyte growth factor (HGF) inhibitors in TNBC cell lines. Methods We determined the anti-proliferative effects of Cpd A, rilotumumab, neratinib and saracatinib tested alone and in combination in a panel of TNBC cells by acid phosphatase assays. We performed reverse phase protein array analysis of c-Met and IGF1Rβ expression and phosphorylation of c-Met (Y1234/1235) in TNBC cells and correlated their expression/phosphorylation with Cpd A sensitivity. We examined the impact of Cpd A, neratinib and saracatinib tested alone and in combination on invasive potential and colony formation.Results TNBC cells are not inherently sensitive to Cpd A, and neither c-Met expression nor phosphorylation are biomarkers of sensitivity to Cpd A. Cpd A enhanced the anti-proliferative effects of neratinib in vitro; however, this effect was limited to cell lines with innate sensitivity to Cpd A. Cpd A had limited anti-invasive effects but it reduced colony formation in the TNBC cell line panel.Conclusions Despite Cpd A having a potential role in reducing cancer cell metastasis, identification of strong predictive biomarkers of c-Met sensitivity would be essential to the development of a c-Met targeted treatment for an appropriately selected cohort of TNBC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data is available under reasonable request.

References

  1. Rodríguez-Pinilla SM, Sarrío D, Honrado E et al (2006) Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-05-2281

    Article  PubMed  Google Scholar 

  2. Lebert JM, Lester R, Powell E et al (2018) Advances in the systemic treatment of triple-negative breast cancer. Curr. Oncol 25(Suppl 1):S142–S150

    Article  CAS  Google Scholar 

  3. McCann KE, Hurvitz SA, McAndrew N (2019) Advances in targeted therapies for triple-negative breast cancer. Drugs 79(11):1217–1230

    Article  Google Scholar 

  4. Kim YJ, Choi JS, Seo J et al (2014) MET is a potential target for use in combination therapy with EGFR inhibition in triple-negative/basal-like breast cancer. Int J Cancer. https://doi.org/10.1002/ijc.28566

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tashiro K, Hagiya M, Nishizawa T et al (1990) Deduced primary structure of rat hepatocyte growth factor and expression of the mRNA in rat tissues. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.87.8.3200

    Article  PubMed  Google Scholar 

  6. Tuck AB, Park M, Sterns EE et al (1996) Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am J Pathol 148(1):225–32

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ho-Yen CM, Green AR, Rakha EA et al (2014) C-Met in invasive breast cancer: Is there a relationship with the basal-like subtype? Cancer 120(2):163–71. https://doi.org/10.1002/cncr.28386

    Article  CAS  PubMed  Google Scholar 

  8. Ma PC, Tretiakova MS, Nallasura V et al (2007) Downstream signalling and specific inhibition of c-MET/HGF pathway in small cell lung cancer: Implications for tumour invasion. Br J Cancer. https://doi.org/10.1038/sj.bjc.6603884

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ponzo MG, Lesurf R, Petkiewicz S et al (2009) Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.0810402106

    Article  PubMed  Google Scholar 

  10. Graveel CR, DeGroot JD, Su Y et al (2009) Met induces diverse mammary carcinomas in mice and is associated with human basal breast cancer. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.0810403106

    Article  PubMed  Google Scholar 

  11. Raghav KP, Wang W, Liu S et al (2012) cMET and phospho-cMET protein levels in breast cancers and survival outcomes. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-11-2830

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shin S, Ogawa M, Yamashita SI et al (1994) Immunoreactive hepatocyte growth factor is a strong and independent predictor of recurrence and survival in human breast cancer. Cancer Res 54(7):1630–3

    PubMed  Google Scholar 

  13. Knight JF, Lesurf R, Zhao H et al (2013) Met synergizes with p53 loss to induce mammary tumors that possess features of claudin-low breast cancer. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1210353110

    Article  PubMed  Google Scholar 

  14. Hochgräfe F, Zhang L, O’Toole SA et al (2010) Tyrosine phosphorylation profiling reveals the signaling network characteristics of basal breast cancer cells. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-10-0911

    Article  PubMed  Google Scholar 

  15. Charafe-Jauffret E, Ginestier C, Monville F et al (2006) Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene. https://doi.org/10.1038/sj.onc.1209254

    Article  PubMed  Google Scholar 

  16. Gonçalves A, Charafe-Jauffret E, Bertucci F et al (2008) Protein profiling of human breast tumor cells identifies novel biomarkers associated with molecular subtypes. Mol Cell Proteomics. https://doi.org/10.1074/mcp.m700487-mcp200

    Article  PubMed  PubMed Central  Google Scholar 

  17. Edakuni G, Sasatomi E, Satoh T et al (2001) Expression of the hepatocyte growth factor/c-Met pathway is increased at the cancer front in breast carcinoma. Pathol Int. https://doi.org/10.1046/j.1440-1827.2001.01182.x

    Article  PubMed  Google Scholar 

  18. Kang JY, Dolled-Filhart M, Ocal IT et al (2003) Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 63(5):1101–5

    CAS  PubMed  Google Scholar 

  19. Garcia S, Dales JP, Charafe-Jauffret E et al (2007) Overexpression of c-Met and of the transducers PI3K, FAK and JAK in breast carcinomas correlates with shorter survival and neoangiogenesis. Int J Oncol 31(1):49–58

    PubMed  Google Scholar 

  20. Garcia S, Dalès JP, Charafe-Jauffret E et al (2007) Poor prognosis in breast carcinomas correlates with increased expression of targetable CD146 and c-Met and with proteomic basal-like phenotype. Hum Pathol. https://doi.org/10.1016/j.humpath.2006.11.015

    Article  PubMed  Google Scholar 

  21. Sen B, Peng S, Saigal B et al (2011) Distinct interactions between c-Src and c-Met in mediating resistance to c-Src inhibition in head and neck cancer. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-10-1617

    Article  PubMed  PubMed Central  Google Scholar 

  22. Acunzo M, Romano G, Palmieri D et al (2013) Cross-talk between MET and EGFR in non-small cell lung cancer involves miR-27a and Sprouty2. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1302107110

    Article  PubMed  Google Scholar 

  23. Ferraro DA, Gaborit N, Maron R et al (2013) Inhibition of triple-negative breast cancer models by combinations of antibodies to EGFR. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1220763110

    Article  PubMed  Google Scholar 

  24. Mueller KL, Hunter LA, Ethier SP, Boerner JL (2008) Met and c-Src cooperate to compensate for loss of epidermal growth factor receptor kinase activity in breast cancer cells. Cancer Res doi. https://doi.org/10.1158/0008-5472.CAN-08-0132

    Article  Google Scholar 

  25. Stanley A, Ashrafi GH, Seddon AM, Modjtahedi H (2017) Synergistic effects of various Her inhibitors in combination with IGF-1R, C-MET and Src targeting agents in breast cancer cell lines. Sci Rep. https://doi.org/10.1038/s41598-017-04301-8

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fuse MA, Plati SK, Burns SS et al (2017) Combination therapy with c-Met and Src inhibitors induces caspase-dependent apoptosis of merlin-deficient Schwann cells and suppresses growth of schwannoma cells. Mol Cancer Ther. https://doi.org/10.1158/1535-7163.MCT-17-0417

    Article  PubMed  Google Scholar 

  27. Eustace AJ, Crown J, Clynes M, O’Donovan N (2008) Preclinical evaluation of dasatinib, a potent Src kinase inhibitor, in melanoma cell lines. J Transl Med 6:53. https://doi.org/10.1186/1479-5876-6-53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hennessy BT, Lu Y, Gonzalez-Angulo AM et al (2010) A technical assessment of the utility of reverse phase protein arrays for the study of the functional proteome in non-microdissected human breast cancers. Clin Proteomics 6:129–151. https://doi.org/10.1007/s12014-010-9055-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A et al (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68:6084–6091. https://doi.org/10.1158/0008-5472.can-07-6854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Shea J, Cremona M, Morgan C et al (2017) A preclinical evaluation of the MEK inhibitor refametinib in HER2-positive breast cancer cell lines including those with acquired resistance to trastuzumab or lapatinib. Oncotarget. https://doi.org/10.18632/oncotarget.19461

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lehmann BD, Jovanović B, Chen X et al (2016) Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One 11:e0157368. https://doi.org/10.1371/journal.pone.0157368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lehmann BD, Bauer JA, Chen X et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. https://doi.org/10.1172/JCI45014

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gaule PB, Crown J, O’Donovan N, Duffy MJ (2014) CMET in triple-negative breast cancer: Is it a therapeutic target for this subset of breast cancer patients? Expert Opin Ther Targets 18(9):999–1009

    Article  CAS  Google Scholar 

  34. Gaule P, Mukherjee N, Corkery B et al (2019) Dasatinib treatment increases sensitivity to c-met inhibition in triple-negative breast cancer cells. Cancers (Basel). https://doi.org/10.3390/cancers11040548

    Article  Google Scholar 

  35. Zhang Y, Du Z, Zhang M (2016) Biomarker development in MET-targeted therapy. Oncotarget. https://doi.org/10.18632/oncotarget.8276

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bauer TW, Somcio RJ, Fan F et al (2006) Regulatory role of c-Met in insulin-like growth factor-I receptor - Mediated migration and invasion of human pancreatic carcinoma cells. Mol Cancer Ther. https://doi.org/10.1158/1535-7163.MCT-05-0175

    Article  PubMed  Google Scholar 

  37. Sohn J, Liu S, Parinyanitikul N et al (2014) cMET activation and EGFR-directed therapy resistance in triple-negative breast cancer. J Cancer. https://doi.org/10.7150/jca.9696

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chae YK, De Melo Gagliato D, Pai SG et al (2016) The association between EGFR and cMET expression and phosphorylation and its prognostic implication in patients with breast cancer. PLoS One. https://doi.org/10.1371/journal.pone.0152585

    Article  PubMed  PubMed Central  Google Scholar 

  39. Green TP, Fennell M, Whittaker R et al (2009) Preclinical anticancer activity of the potent, oral Src inhibitor AZD0530. Mol Oncol 3(3):248–61. https://doi.org/10.1016/j.molonc.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Amgen, who kindly provided access to the c-Met inhibitor Compound-A used in our studies.

Funding

This research was supported by funding from the Health Research Board (CSA/2007/11), Science Foundation Ireland (08/SRC/B1410), the Cancer Clinical Research Trust/The Caroline Foundation and the Irish Cancer Society Collaborative Cancer Research Centre Breast-Predict (CCRC13GAL). The opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Irish Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex J. Eustace.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not required for this study.

Consent for publication

All authors consent to the publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Laura Breen and Patricia B. Gaule are joint first authors.

Electronic supplementary material

ESM 1

(PDF 422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breen, L., Gaule, P.B., Canonici, A. et al. Targeting c-Met in triple negative breast cancer: preclinical studies using the c-Met inhibitor, Cpd A. Invest New Drugs 38, 1365–1372 (2020). https://doi.org/10.1007/s10637-020-00937-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-020-00937-y

Keywords

Navigation