Skip to main content

Advertisement

Log in

Randomized phase II trial of neoadjuvant everolimus in patients with high-risk localized prostate cancer

  • PHASE II STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Background Despite definitive local therapy, patients with high-risk prostate cancer have a significant risk for local and distant failure. To date, no systemic therapy given prior to surgery has been shown to improve outcomes. The phosphatidilinositol 3-kinase/AKT/mTOR pathway is commonly dysregulated in men with prostate cancer. We sought to determine the clinical efficacy and safety of the mTOR/TORC1 inhibitor everolimus in men with high-risk prostate cancer undergoing radical prostatectomy. Methods This is a randomized phase II study of everolimus at two different doses (5 and 10 mg daily) given orally for 8 weeks before radical prostatectomy in men with high-risk prostate cancer. The primary endpoint was the pathologic response (histologic P0, margin status, extraprostatic extension) and surgical outcomes. Secondary endpoints included changes in serum PSA level and treatment effects on levels of expression of mTOR, p4EBP1, pS6 and pAKT. Results Seventeen patients were enrolled: nine at 10 mg dose and eight at 5 mg dose. No pathologic complete responses were observed and the majority of patients (88%) had an increase in their PSA values leading to this study being terminated early due to lack of clinical efficacy. Treatment-related adverse events were similar to those previously reported with the use of everolimus in other solid tumors and no additional surgical complications were observed. A significant decrease in the expression of p4EBP1 was noted in prostatectomy samples following treatment. Conclusions Neoadjuvant everolimus given at 5 mg or 10 mg daily for 8 weeks prior to radical prostatectomy did not impact pathologic responses and surgical outcomes of patients with high-risk prostate cancer. Trial registration NCT00526591.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. D'Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA et al (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. Jama. 280(11):969–974

    Article  CAS  PubMed  Google Scholar 

  2. Lau WK, Bergstralh EJ, Blute ML, Slezak JM, Zincke H (2002) Radical prostatectomy for pathological Gleason 8 or greater prostate cancer: influence of concomitant pathological variables. J Urol 167(1):117–122

    Article  PubMed  Google Scholar 

  3. Kupelian PA, Elshaikh M, Reddy CA, Zippe C, Klein EA (2002) Comparison of the efficacy of local therapies for localized prostate cancer in the prostate-specific antigen era: a large single-institution experience with radical prostatectomy and external-beam radiotherapy. J Clin Oncol 20(16):3376–3385

    Article  PubMed  Google Scholar 

  4. Aus G, Abrahamsson PA, Ahlgren G, Hugosson J, Lundberg S, Schain M, Schelin S, Pedersen K (2002) Three-month neoadjuvant hormonal therapy before radical prostatectomy: a 7-year follow-up of a randomized controlled trial. BJU Int 90(6):561–566

    Article  CAS  PubMed  Google Scholar 

  5. Van Poppel H, De Ridder D, Elgamal AA, Van de Voorde W, Werbrouck P, Ackaert K et al (1995) Neoadjuvant hormonal therapy before radical prostatectomy decreases the number of positive surgical margins in stage T2 prostate cancer: interim results of a prospective randomized trial. The Belgian Uro-oncological study group. J Urol 154(2 Pt 1):429–434

    PubMed  Google Scholar 

  6. Gleave ME, Goldenberg SL, Chin JL, Warner J, Saad F, Klotz LH et al (2001) Randomized comparative study of 3 versus 8-month neoadjuvant hormonal therapy before radical prostatectomy: biochemical and pathological effects. J Urol 166(2):500–506 discussion 6-7

    Article  CAS  PubMed  Google Scholar 

  7. Klotz LH, Goldenberg SL, Jewett MA, Fradet Y, Nam R, Barkin J et al (2003) Long-term followup of a randomized trial of 0 versus 3 months of neoadjuvant androgen ablation before radical prostatectomy. J Urol 170(3):791–794

    Article  CAS  PubMed  Google Scholar 

  8. Oh WK, George DJ, Kaufman DS, Moss K, Smith MR, Richie JP et al (2001) Neoadjuvant docetaxel followed by radical prostatectomy in patients with high-risk localized prostate cancer: a preliminary report. Semin Oncol 28(4 Suppl 15):40–44

    Article  CAS  PubMed  Google Scholar 

  9. Dreicer R, Magi-Galluzzi C, Zhou M, Rothaermel J, Reuther A, Ulchaker J, Zippe C, Fergany A, Klein EA (2004) Phase II trial of neoadjuvant docetaxel before radical prostatectomy for locally advanced prostate cancer. Urology 63(6):1138–1142

    Article  PubMed  Google Scholar 

  10. Beer TM, Garzotto M, Lowe BA, Ellis WJ, Montalto MA, Lange PH, Higano CS (2004) Phase I study of weekly mitoxantrone and docetaxel before prostatectomy in patients with high-risk localized prostate cancer. Clin Cancer Res 10(4):1306–1311

    Article  CAS  PubMed  Google Scholar 

  11. Febbo PG, Richie JP, George DJ, Loda M, Manola J, Shankar S et al (2005) Neoadjuvant docetaxel before radical prostatectomy in patients with high-risk localized prostate cancer. Clin Cancer Res 11(14):5233–5240

    Article  CAS  PubMed  Google Scholar 

  12. Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K pathway as drug target in human cancer. J Clin Oncol 28(6):1075–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McCubrey JA, Steelman LS, Kempf CR, Chappell WH, Abrams SL, Stivala F et al (2011) Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. J Cell Physiol 226(11):2762–2781

    Article  CAS  PubMed  Google Scholar 

  14. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1):11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kreisberg JI, Malik SN, Prihoda TJ, Bedolla RG, Troyer DA, Kreisberg S, Ghosh PM (2004) Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Res 64(15):5232–5236

    Article  CAS  PubMed  Google Scholar 

  16. Ayala G, Thompson T, Yang G, Frolov A, Li R, Scardino P et al (2004) High levels of phosphorylated form of Akt-1 in prostate cancer and non-neoplastic prostate tissues are strong predictors of biochemical recurrence. Clin Cancer Res 10(19):6572–6578

    Article  CAS  PubMed  Google Scholar 

  17. Bedolla R, Prihoda TJ, Kreisberg JI, Malik SN, Krishnegowda NK, Troyer DA, Ghosh PM (2007) Determining risk of biochemical recurrence in prostate cancer by immunohistochemical detection of PTEN expression and Akt activation. Clin Cancer Res 13(13):3860–3867

    Article  CAS  PubMed  Google Scholar 

  18. Skvortsova I, Skvortsov S, Stasyk T, Raju U, Popper BA, Schiestl B, von Guggenberg E, Neher A, Bonn GK, Huber LA, Lukas P (2008) Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Proteomics 8(21):4521–4533

    Article  CAS  PubMed  Google Scholar 

  19. Grunwald V, DeGraffenried L, Russel D, Friedrichs WE, Ray RB, Hidalgo M (2002) Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Res 62(21):6141–6145

    CAS  PubMed  Google Scholar 

  20. Lotan TL, Gurel B, Sutcliffe S, Esopi D, Liu W, Xu J, Hicks JL, Park BH, Humphreys E, Partin AW, Han M, Netto GJ, Isaacs WB, de Marzo AM (2011) PTEN protein loss by immunostaining: analytic validation and prognostic indicator for a high risk surgical cohort of prostate cancer patients. Clin Cancer Res 17(20):6563–6573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mulholland DJ, Tran LM, Li Y, Cai H, Morim A, Wang S, Plaisier S, Garraway IP, Huang J, Graeber TG, Wu H (2011) Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 19(6):792–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, Staroslawska E, Sosman J, McDermott D, Bodrogi I, Kovacevic Z, Lesovoy V, Schmidt-Wolf IGH, Barbarash O, Gokmen E, O'Toole T, Lustgarten S, Moore L, Motzer RJ (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356(22):2271–2281

    Article  CAS  PubMed  Google Scholar 

  23. Motzer RJ (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456

    Article  CAS  PubMed  Google Scholar 

  24. Pavel ME, Hainsworth JD, Baudin E, Peeters M, Horsch D, Winkler RE et al (2011) Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 378(9808):2005–2012

    Article  CAS  PubMed  Google Scholar 

  25. Chan S, Scheulen ME, Johnston S, Mross K, Cardoso F, Dittrich C, Eiermann W, Hess D, Morant R, Semiglazov V, Borner M, Salzberg M, Ostapenko V, Illiger HJ, Behringer D, Bardy-Bouxin N, Boni J, Kong S, Cincotta M, Moore L (2005) Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol 23(23):5314–5322

    Article  CAS  Google Scholar 

  26. Morgan TM, Pitts TE, Gross TS, Poliachik SL, Vessella RL, Corey E (2008) RAD001 (Everolimus) inhibits growth of prostate cancer in the bone and the inhibitory effects are increased by combination with docetaxel and zoledronic acid. Prostate 68(8):861–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Templeton AJ, Dutoit V, Cathomas R, Rothermundt C, Bartschi D, Droge C et al (2013) Phase 2 trial of single-agent everolimus in chemotherapy-naive patients with castration-resistant prostate cancer (SAKK 08/08). Eur Urol 64(1):150–158

    Article  CAS  PubMed  Google Scholar 

  28. Armstrong AJ, Netto GJ, Rudek MA, Halabi S, Wood DP, Creel PA, Mundy K, Davis SL, Wang T, Albadine R, Schultz L, Partin AW, Jimeno A, Fedor H, Febbo PG, George DJ, Gurganus R, de Marzo AM, Carducci MA (2010) A pharmacodynamic study of rapamycin in men with intermediate- to high-risk localized prostate cancer. Clin Cancer Res 16(11):3057–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakabayashi M, Werner L, Courtney KD, Buckle G, Oh WK, Bubley GJ, Hayes JH, Weckstein D, Elfiky A, Sims DM, Kantoff PW, Taplin ME (2012) Phase II trial of RAD001 and bicalutamide for castration-resistant prostate cancer. BJU Int 110(11):1729–1735

    Article  CAS  PubMed  Google Scholar 

  30. Kattan MW, Wheeler TM, Scardino PT (1999) Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J Clin Oncol 17(5):1499–1507

    Article  CAS  PubMed  Google Scholar 

  31. Edge S BD, Compton CC, Fritz AG, Greene FL, Trotti A. AJCC (2010) Cancer Staging Manual. Springer, 649 p

  32. Touijer K, Eastham JA, Secin FP, Romero Otero J, Serio A, Stasi J, Sanchez-Salas R, Vickers A, Reuter VE, Scardino PT, Guillonneau B (2008) Comprehensive prospective comparative analysis of outcomes between open and laparoscopic radical prostatectomy conducted in 2003 to 2005. J Urol 179(5):1811–1817 discussion 7

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H, Khuri FR (2005) Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 65(16):7052–7058

    Article  CAS  PubMed  Google Scholar 

  34. Dey N, Sun Y, Carlson JH, Wu H, Lin X, Leyland-Jones B et al (2016) Anti-tumor efficacy of BEZ235 is complemented by its anti-angiogenic effects via downregulation of PI3K-mTOR-HIF1alpha signaling in HER2-defined breast cancers. Am J Cancer Res 6(4):714–746

    CAS  PubMed  PubMed Central  Google Scholar 

  35. O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66(3):1500–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De P, Miskimins K, Dey N, Leyland-Jones B (2013) Promise of rapalogues versus mTOR kinase inhibitors in subset specific breast cancer: old targets new hope. Cancer Treat Rev 39(5):403–412

    Article  CAS  PubMed  Google Scholar 

  37. Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA et al (2018) Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol 15(4):222–234

    Article  CAS  PubMed  Google Scholar 

  38. Weeber F, Cirkel GA, Hoogstraat M, Bins S, Gadellaa-van Hooijdonk CGM, Ooft S et al (2017) Predicting clinical benefit from everolimus in patients with advanced solid tumors, the CPCT-03 study. Oncotarget 8(33):55582–55592

    Article  PubMed  PubMed Central  Google Scholar 

  39. de Bono JS, De Giorgi U, Massard C, Bracarda S, Nava Rodrigues D, Kocak I et al (2016) PTEN loss as a predictive biomarker for the Akt inhibitor ipatasertib combined with abiraterone acetate in patients with metastatic castration-resistant prostate cancer (mCRPC). Ann Oncol 27(suppl_6):718O–718O

    Google Scholar 

Download references

Acknowledgements

This research was supported by the research infrastructure at the Cleveland Clinic and Case Comprehensive Cancer Center.

Funding

This trial was supported by a research grant provided by Novartis and paid to the institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Garcia.

Ethics declarations

Conflict of interest

All authors declare that they have no specific conflicts of interest related to this manuscript. Jorge A. Garcia received Research Funding - paid to institution: Novartis and GSK.

Ethical approval

All procedures performed in this study involving human participants were approved by the Cleveland Clinic Institutional Review Board. All procedures were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshkin, V.S., Mir, M.C., Barata, P. et al. Randomized phase II trial of neoadjuvant everolimus in patients with high-risk localized prostate cancer. Invest New Drugs 37, 559–566 (2019). https://doi.org/10.1007/s10637-019-00778-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-019-00778-4

Keywords

Navigation