Skip to main content
Log in

Comparative effects of doxorubicin and a doxorubicin analog, 13-deoxy, 5-iminodoxorubicin (GPX-150), on human topoisomerase IIβ activity and cardiac function in a chronic rabbit model

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Purpose A novel doxorubicin (DOX) analog, 13-deoxy, 5-iminodoxorubicin (DIDOX), was synthesized to prevent quinone redox cycling and alcohol metabolite formation, two prevailing hypotheses of anthracycline cardiotoxicity. The chronic cardiotoxicity of DOX and DIDOX was compared. Since a recent hypothesis posits that DOX-induced chronic cardiotoxicity may be mediated by inhibition of the topoisomerase IIβ/DNA reaction, we also compared potency of DOX and DIDOX to inhibit topoisomerase IIβ decatenation of kinetoplast DNA (kDNA) (a series or interlocking small rings of DNA). Methods We compared DIDOX with DOX to alter cardiac function in a chronic rabbit model. We also compared potency to inhibit decatenation of kDNA by purified topoisomerase IIβ in vitro. Results DOX and DIDOX caused similar decreases in white and red blood cell counts indicating similar positions on the dose-response curve for cytotoxic efficacy. However, DOX but not DIDOX elicited a decrease in left ventricular fractional shortening and contractility of isolated left atrial preparations obtained at sacrifice. Histological scoring of apex and left ventricular free wall samples showed that DOX-treated rabbits had significantly more cardiac injury than samples from DIDOX or saline-treated rabbits. DOX inhibited decatenation of DNA by topoisomerase IIβ with an EC50 of 40.1 μM while DIDOX did not have any apparent effect on topoisomerase IIβ at the concentrations used in the study (0.1–100 μM). Conclusions Unlike DOX, DIDOX did not cause chronic cardiotoxicity and did not appear to interact with topoisomerase IIβ in decatenation assays consistent with the hypothesis that inhibition of the topoisomerase IIβ/DNA reaction may be a contributor of the mechanism of chronic DOX cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sawyer DB (2013) Anthracyclines and heart failure. N Engl J Med 368(12):1154–1156. doi:10.1056/NEJMcibr1214975

    Article  CAS  PubMed  Google Scholar 

  2. Vincent DT, Ibrahim YF, Espey MG, Suzuki YJ (2013) The role of antioxidants in the era of cardiooncology. Cancer Chemother Pharmacol 72(6):1157–1168. doi:10.1007/s00280-013-2260-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kalyanaraman B, Morehouse KM, Mason RP (1991) An electron paramagnetic resonance study of the interactions between the adriamycin semiquinone, hydrogen peroxide, iron-chelators, and radical scavengers. Arch Biochem Biophys 286(1):164–170

    Article  CAS  PubMed  Google Scholar 

  4. Vasquez-Vivar J, Martasek P, Hogg N, Masters BS, Pritchard KA Jr, Kalyanaraman B (1997) Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry 36(38):11293–11297. doi:10.1021/bi971475e

  5. Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, Mutharasan RK, Naik TJ, Ardehali H (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest 124(2):617–630. doi:10.1172/JCI72931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Olson RD, Mushlin PS, Brenner DE, Fleischer S, Cusack BJ, Chang BK, Boucek RJ Jr (1988) Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc Natl Acad Sci U S A 85(10):3585–3589

  7. Minotti G, Recalcati S, Mordente A, Liberi G, Calafiore AM, Mancuso C, Preziosi P, Cairo G (1998) The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium. FASEB J 12(7):541–552

    CAS  PubMed  Google Scholar 

  8. Minotti G, Recalcati S, Menna P, Salvatorelli E, Corna G, Cairo G (2004) Doxorubicin cardiotoxicity and the control of iron metabolism: quinone-dependent and independent mechanisms. Methods Enzymol 378:340–361. doi:10.1016/s0076-6879(04)78025-8

    Article  CAS  PubMed  Google Scholar 

  9. Gambliel HA, Burke BE, Cusack BJ, Walsh GM, Zhang YL, Mushlin PS, Olson RD (2002) Doxorubicin and C-13 deoxydoxorubicin effects on ryanodine receptor gene expression. Biochem Biophys Res Commun 291(3):433–438. doi:10.1006/bbrc.2002.6380

    Article  CAS  PubMed  Google Scholar 

  10. Kotamraju S, Chitambar CR, Kalivendi SV, Joseph J, Kalyanaraman B (2002) Transferrin receptor-dependent iron uptake is responsible for doxorubicin-mediated apoptosis in endothelial cells: role of oxidant-induced iron signaling in apoptosis. J Biol Chem 277(19):17179–17187. doi:10.1074/jbc.M111604200

    Article  CAS  PubMed  Google Scholar 

  11. Kalivendi SV, Kotamraju S, Zhao H, Joseph J, Kalyanaraman B (2001) Doxorubicin-induced apoptosis is associated with increased transcription of endothelial nitric-oxide synthase. Effect of antiapoptotic antioxidants and calcium. J Biol Chem 276(50):47266–47276. doi:10.1074/jbc.M106829200

    Article  CAS  PubMed  Google Scholar 

  12. Hanson ES, Leibold EA (1999) Regulation of the iron regulatory proteins by reactive nitrogen and oxygen species. Gene Expr 7(4–6):367–376

    CAS  PubMed  Google Scholar 

  13. Eisenstein RS (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 20:627–662. doi:10.1146/annurev.nutr.20.1.627

    Article  CAS  PubMed  Google Scholar 

  14. Wardrop SL, Watts RN, Richardson DR (2000) Nitrogen monoxide activates iron regulatory protein 1 RNA-binding activity by two possible mechanisms: effect on the [4Fe-4S] cluster and iron mobilization from cells. Biochemistry 39(10):2748–2758

    Article  CAS  PubMed  Google Scholar 

  15. Minotti G, Cavaliere AF, Mordente A, Rossi M, Schiavello R, Zamparelli R, Possati G (1995) Secondary alcohol metabolites mediate iron delocalization in cytosolic fractions of myocardial biopsies exposed to anticancer anthracyclines. Novel linkage between anthracycline metabolism and iron-induced cardiotoxicity. J Clin Invest 95(4):1595–1605. doi:10.1172/JCI117833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Minotti G, Ronchi R, Salvatorelli E, Menna P, Cairo G (2001) Doxorubicin irreversibly inactivates iron regulatory proteins 1 and 2 in cardiomyocytes: evidence for distinct metabolic pathways and implications for iron-mediated cardiotoxicity of antitumor therapy. Cancer Res 61(23):8422–8428

    CAS  PubMed  Google Scholar 

  17. Minotti G, Cairo G, Monti E (1999) Role of iron in anthracycline cardiotoxicity: new tunes for an old song? FASEB J 13(2):199–212

    CAS  PubMed  Google Scholar 

  18. Cusack BJ, Mushlin PS, Voulelis LD, Li X, Boucek RJ Jr, Olson RD (1993) Daunorubicin-induced cardiac injury in the rabbit: a role for daunorubicinol? Toxicol Appl Pharmacol 118(2):177–185

  19. Shadle SE, Bammel BP, Cusack BJ, Knighton RA, Olson SJ, Mushlin PS, Olson RD (2000) Daunorubicin cardiotoxicity: evidence for the importance of the quinone moiety in a free-radical-independent mechanism. Biochem Pharmacol 60(10):1435–1444

    Article  CAS  PubMed  Google Scholar 

  20. Zhang S, Liu X, Bawa-Khalfe T, LS L, Lyu YL, Liu LF, Yeh ET (2012) Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18(11):1639–1642. doi:10.1038/nm.2919

    Article  CAS  PubMed  Google Scholar 

  21. Vavrova A, Jansova H, Mackova E, Machacek M, Haskova P, Tichotova L, Sterba M, Simunek T (2013) Catalytic inhibitors of topoisomerase II differently modulate the toxicity of anthracyclines in cardiac and cancer cells. PLoS One 8 (10):e76676. doi:10.1371/journal.pone.0076676

  22. Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, Liu LF (2007) Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 67(18):8839–8846. doi:10.1158/0008-5472.CAN-07-1649

    Article  CAS  PubMed  Google Scholar 

  23. Zhu H, Sarkar S, Scott L, Danelisen I, Trush MA, Jia Z, Li YR (2016) Doxorubicin Redox Biology: Redox Cycling, Topoisomerase Inhibition, and Oxidative Stress. 2016 1 (3):10

  24. Herman EH, Ferrans VJ (1986) Pretreatment with ICRF-187 provides long-lasting protection against chronic daunorubicin cardiotoxicity in rabbits. Cancer Chemother Pharmacol 16(2):102–106

    Article  CAS  PubMed  Google Scholar 

  25. Hasinoff BB, Herman EH (2007) Dexrazoxane: how it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovasc Toxicol 7(2):140–144. doi:10.1007/s12012-007-0023-3

    Article  CAS  PubMed  Google Scholar 

  26. Holstein SA, Bigelow JC, Olson RD, Vestal RE, Walsh GM, Hohl RJ (2015) Phase I and pharmacokinetic study of the novel anthracycline derivative 5-imino-13-deoxydoxorubicin (GPX-150) in patients with advanced solid tumors. Investig New Drugs 33(3):594–602. doi:10.1007/s10637-015-0220-z

    Article  CAS  Google Scholar 

  27. Hasinoff BB, Wu X, Patel D, Kanagasabai R, Karmahapatra S, Yalowich JC (2016) Mechanisms of action and reduced cardiotoxicity of Pixantrone; a topoisomerase II targeting agent with cellular selectivity for the topoisomerase IIalpha isoform. J Pharmacol Exp Ther 356(2):397–409. doi:10.1124/jpet.115.228650

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Mary J. Hicks, Mandy R. McKay and Billie McKown for their excellent technical support. This study was supported in part by Gem Pharmaceuticals LLC, Birmingham, AL 35244 and NIH grant R41HL/CA64986. This material is the result of work supported by resources from the Boise VA Medical Center, Boise, ID 83702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole E. Frank.

Ethics declarations

Author’s disclosure of potential conflicts of interest

Nicole E. Frank: None.

Barry J. Cusack: None.

Todd T. Talley: Research funding from Gem Pharmaceuticals, LLC.

Jerry M. Walsh: Consultant for Gem Pharmaceuticals, LLC.

Richard D. Olson: Consultant for Gem Pharmaceuticals, LLC.

Funding/support

The work was sponsored by Gem Pharmaceuticals, LLC Birmingham, AL with funding from NIH grant R41HL/CA64986.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, N.E., Cusack, B.J., Talley, T.T. et al. Comparative effects of doxorubicin and a doxorubicin analog, 13-deoxy, 5-iminodoxorubicin (GPX-150), on human topoisomerase IIβ activity and cardiac function in a chronic rabbit model. Invest New Drugs 34, 693–700 (2016). https://doi.org/10.1007/s10637-016-0388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-016-0388-x

Keywords

Navigation