Skip to main content

Advertisement

Log in

Pilot Validation of a New Wireless Patch System as an Ambulatory, Noninvasive Tool That Measures Gut Myoelectrical Signals: Physiologic and Disease Correlations

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

Limited means exist to assess gastrointestinal activity in a noninvasive, objective way that is highly predictive of underlying motility disorders. The aim of this paper is to demonstrate the feasibility of recording myoelectric gastrointestinal activity by cutaneous patches and to correlate myoelectric signals with gastrointestinal function in various clinical settings.

Methods

A novel wireless patch system (WPS) (G-Tech Medical) that acquires gastrointestinal myoelectrical signals was placed on the patients’ anterior abdomens. Data were transmitted wirelessly to a mobile device with a user interface and forwarded to a cloud server where processing algorithms identified episodes of motor activity, quantified their parameters, and nominally assigned them to specific gastrointestinal organs based on their frequencies.

Results

The inherent reproducibility of the WPS measurement technique itself and from the underlying gut activity, coupled with source validation and sensitivity to changes in gut activity in several physiologic and pathologic states, demonstrates its feasibility, safety, and performance in clinical settings.

Conclusions

The novel WPS technology, measuring myoelectric intestinal activity noninvasively and continuously over multiple days, is feasible in a wide range of clinical settings, highlighting its promise in the diagnosis and management of motility disorders. Further research is required for more extensive validation and to determine how best to employ this information to optimize patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Talley NJ. Functional gastrointestinal disorders as a public health problem. Neurogastroenterol Motil. 2008;20:121–129. https://doi.org/10.1111/j.1365-2982.2008.01097.x.

    Article  PubMed  Google Scholar 

  2. Peery AF, Crockett SD, Barritt AS, et al. Burden of gastrointestinal, liver, and pancreatic diseases in the United States. Gastroenterology. 2015;149:1731–1741.e3. https://doi.org/10.1053/j.gastro.2015.08.045.

    Article  PubMed  Google Scholar 

  3. Kim ER, Rhee PL. How to interpret a functional or motility test—colon transit study. J Neurogastroenterol Motil. 2012;18:94–99. https://doi.org/10.5056/jnm.2012.18.1.94.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kekilli E, Yagmur C, Isik B, Aydin OM. Calculating colon transit time with radionuclide-filled capsules in constipated patients: a new method for colon transit study. Abdom Imaging. 2005;30(5):593–597. https://doi.org/10.1007/s00261-005-0305-9. Epub May 2 2005. PMID: 15886950.

  5. Hollenbach M, Hoffmeister A, Rosendahl J, Mössner J. Stellenwert der Funktionsdiagnostik in der Gastroenterologie [Importance of functional diagnostics in gastroenterology]. Internist (Berl). 2018;59:25–37. https://doi.org/10.1007/s00108-017-0359-0.

    Article  CAS  Google Scholar 

  6. Saad RJ. The wireless motility capsule: a one-stop shop for the evaluation of GI motility disorders. Curr Gastroenterol Rep. 2016;18:14. https://doi.org/10.1007/s11894-016-0489-x.

    Article  PubMed  Google Scholar 

  7. Patcharatrakul T, Gonlachanvit S. Technique of functional and motility test: how to perform antroduodenal manometry. J Neurogastroenterol Motil. 2013;19:395–404. https://doi.org/10.5056/jnm.2013.19.3.395.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dua MM, Navalgund A, Axelrod S, et al. Monitoring gastric myoelectric activity after pancreaticoduodenectomy for diet “readiness”. Am J Physiol Gastrointest Liver Physiol. 2018;315:G743–G751. https://doi.org/10.1152/ajpgi.00074.2018.

    Article  CAS  PubMed  Google Scholar 

  9. Navalgund A, Axelrod S, Axelrod L, et al. Colon myoelectric activity measured after open abdominal surgery with a noninvasive wireless patch system predicts time to first flatus. J Gastrointest Surg. 2019;23:982–989. https://doi.org/10.1007/s11605-018-4030-4.

    Article  PubMed  Google Scholar 

  10. Farmer AD, Wegeberg AL, Brock B, et al. Regional gastrointestinal contractility parameters using the wireless motility capsule: inter-observer reproducibility and influence of age, gender and study country. Aliment Pharmacol Ther. 2018;47:391–400. https://doi.org/10.1111/apt.14438.

    Article  CAS  PubMed  Google Scholar 

  11. Sarna SK, et al. Types of human colonic electrical activities recorded postoperatively. Gastroenterology. 1981;81:61–70.

    Article  CAS  Google Scholar 

  12. Condon RE, Cowles VE, Ferraz AA, et al. Human colonic smooth muscle electrical activity during and after recovery from postoperative ileus. Am J Physiol Gastrointest Liver Physiol. 1995;269:G408–G417.

    Article  CAS  Google Scholar 

  13. Su A, Gandhy R, Barlow C, Triadafilopoulos G. Utility of high-resolution anorectal manometry and wireless motility capsule in the evaluation of patients with Parkinson’s disease and chronic constipation. BMJ Open Gastroenterol. 2016;3:e000118. https://doi.org/10.1136/bmjgast-2016-000118.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Su A, Gandhy R, Barlow C, Triadafilopoulos G. Utility of the wireless motility capsule and lactulose breath testing in the evaluation of patients with Parkinson’s disease who present with functional gastrointestinal symptoms. BMJ Open Gastroenterol. 2017;4:e000132. https://doi.org/10.1136/bmjgast-2017-000132.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vazquez Roque M, Bouras EP. Epidemiology and management of chronic constipation in elderly patients. Clin Interv Aging. 2015;10:919–930. https://doi.org/10.2147/cia.s54304.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ford AC, Lacy BE, Talley NJ. Irritable bowel syndrome. N Engl J Med. 2017;376:2566–2578. https://doi.org/10.1056/NEJMra1607547.

    Article  CAS  PubMed  Google Scholar 

  17. Lacy BE, Patel NK. Rome criteria and a diagnostic approach to irritable bowel syndrome. J Clin Med. 2017;6:99. https://doi.org/10.3390/jcm6110099.

    Article  PubMed Central  Google Scholar 

  18. Ye Y, Garcia-Casado J, Martinez-de-Juan JL, Ponce JL. Empirical mode decomposition: a method to reduce low frequency interferences from surface electroenterogram. Med Biol Eng Comput. 2007;45:541–551. https://doi.org/10.1007/s11517-007-0189-7.

    Article  CAS  PubMed  Google Scholar 

  19. Ye-Lin Y, Garcia-Casado J, Prats-Boluda G, Ponce JL, Martinez-de-Juan JL. Enhancement of the non-invasive electroenterogram to identify intestinal pacemaker activity. Physiol Meas. 2009;30:885–902. https://doi.org/10.1088/0967-3334/30/9/002.

    Article  CAS  PubMed  Google Scholar 

  20. Wegman EA, Gandevia SC, Aniss AM. Concordance between colonic myoelectrical signals recorded with intramuscular electrodes in the human rectosigmoid in vivo. Gut. 1990;31:1289–1293. https://doi.org/10.1136/gut.31.11.1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Furness JB, Rivera LR, Cho HJ, Bravo DM, Callaghan B. The gut as a sensory organ. Nat Rev Gastroenterol Hepatol. 2013;10:729–740. https://doi.org/10.1038/nrgastro.2013.180.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Triadafilopoulos.

Ethics declarations

Conflict of interest

All authors have variable equity positions with G-Tech Medical.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Axelrod, L., Axelrod, S., Navalgund, A. et al. Pilot Validation of a New Wireless Patch System as an Ambulatory, Noninvasive Tool That Measures Gut Myoelectrical Signals: Physiologic and Disease Correlations. Dig Dis Sci 66, 3505–3515 (2021). https://doi.org/10.1007/s10620-020-06663-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06663-y

Keywords

Navigation