Skip to main content

Advertisement

Log in

Identification of Acute Pancreatitis-Related Genes and Pathways by Integrated Bioinformatics Analysis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

The present study aimed to identify the differential expressed genes that are related to acute pancreatitis.

Methods

Microarray datasets GSE109227 and GSE3644 were downloaded from the public database and analyzed to screen the genes. Afterward, integrated analysis of these genes were performed, including gene ontology and pathway enrichment analysis, protein–protein interaction network construction, expression level evaluation in human organs, relevant miRNAs and TFs prediction, and prognosis values of hub genes in pancreatic carcinoma.

Results

A total number of 93 differential expressed genes were screened from the datasets, and EGFR, CDH1, ACTB, CD44, and VCL were identified as hub DEGs. Functional enrichment analysis demonstrated that these genes were mostly enriched in biological processes such as cell adhesion, platelet aggregation, glycoprotein binding, and also involved in multiple pathways included adherent junction, proteoglycans in cancer, bacterial invasion of epithelial cells, focal adhesion, Rap1 signaling pathway, regulation of actin cytoskeleton, and pathways in cancers. The five hub genes were all expressed in human pancreas organs with various levels. Hub gene-related network investigation predicted core miRNAs including hsa-mir-16-5p and main TFs like SOX9 with close interactions with these hub genes. Survival analysis also indicated that the high expression of EGFR, CDH1, ACTB, CD44, and VCL were significantly associated with poor prognosis in pancreatic carcinoma.

Conclusions

The study suggested that hub genes EGFR, CDH1, ACTB, CD44, and VCL may play vital role in the pathogenesis of acute pancreatitis and may serve as potential biomarkers to facilitate future acute pancreatitis diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Forsmark CE, Vege SS, Wilcox CM. Acute pancreatitis. N Engl J Med. 2017;376:598–599.

    PubMed  Google Scholar 

  2. Venneman NG, Buskens E, Besselink MG, et al. Small gallstones are associated with increased risk of acute pancreatitis: potential benefits of prophylactic cholecystectomy? Am J Gastroenterol. 2005;100:2540–2550.

    PubMed  Google Scholar 

  3. Lankisch PG, Lowenfels AB, et al. What is the risk of alcoholic pancreatitis in heavy drinkers? Pancreas. 2002;25:411–412.

    PubMed  Google Scholar 

  4. Banks PA, Bollen TL, Dervenis C, the Acute Pancreatitis Classification Working Group, et al. Classification of acute pancreatitis-2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62:102–111.

    PubMed  Google Scholar 

  5. Lankisch PG, Apte M, Banks PA. Acute pancreatitis. Lancet. 2015;386:85–96.

    PubMed  Google Scholar 

  6. Mckay CJ, Imrie CW. The continuing challenge of early mortality in acute pancreatitis. Br J Surg. 2010;91:1243–1244.

    Google Scholar 

  7. Whitcomb David C. Genetic risk factors for pancreatic disorders. Gastroenterology. 2013;144:1292–1302.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pelaez-Luna M, Robles-Diaz G, Canizales-Quinteros S, et al. PRSS1 and SPINK1 mutations in idiopathic chronic and recurrent acute pancreatitis. World J Gastroenterol. 2014;20:11788–11792.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Xiao H, Xu D, Chen P, Zeng G, et al. Identification of five genes as a potential biomarker for predicting progress and prognosis in adrenocortical carcinoma. J Cancer.. 2018;9:4484–4495.

    PubMed  PubMed Central  Google Scholar 

  10. Cheok CF, Verma CS, Baselga J, et al. Translating p53 into the clinic. Nat Rev Clin Oncol. 2011;8:25–37.

    CAS  PubMed  Google Scholar 

  11. Lehmann S, Bykov VJN, Ali D, et al. Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol. 2012;30:3633–3639.

    CAS  PubMed  Google Scholar 

  12. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    CAS  Google Scholar 

  13. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.

    Google Scholar 

  14. Szklarczyk D, Franceschini A, Kuhn M, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011;39:561–568.

    Google Scholar 

  15. Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4:2.

    Google Scholar 

  16. Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357:6352.

    Google Scholar 

  17. Vlachos IS, Paraskevopoulou D, Karagkouni G, et al. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucl Acids Res. 2015;43:D153–D159.

    CAS  PubMed  Google Scholar 

  18. Chou CH, Shrestha S, Yang CD, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46:2017.

    Google Scholar 

  19. Xia J, Gill EE, Hancock REW. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc. 2015;10:823–844.

    CAS  PubMed  Google Scholar 

  20. Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Anaya J. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. Peer J PrePrints. 2016;2:e67.

    Google Scholar 

  22. Ozaki N, Fukuchi Y, Tomiyoshi S, et al. Autophagy regulation in pancreatic acinar cells is independent of epidermal growth factor receptor signaling. Biochem Biophys Res Commun. 2014;446:224–230.

    CAS  PubMed  Google Scholar 

  23. Lu M. Construction of network for protein kinases that play a role in acute pancreatitis. Pancreas. 2013;42:607–613.

    PubMed  Google Scholar 

  24. Huang Y, Xia W, Lu M, et al. Role of kinase epidermal growth factor receptor and SRC in the Caerulein-induced acute pancreatitis in mice. Pancreas. 2014;44:152–157.

    Google Scholar 

  25. Hu G, Shen J, Cheng L, et al. Reg4 protects against acinar cell necrosis in experimental pancreatitis. Gut. 2011;60:820.

    CAS  PubMed  Google Scholar 

  26. Dembiński A, Warzecha Z, Konturek PC, et al. Epidermal growth factor accelerates pancreatic recovery after caerulein-induced pancreatitis. Eur J Pharmacol. 2000;398:159–168.

    PubMed  Google Scholar 

  27. Gumbiner BM. Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol. 2005;6:622–634.

    CAS  PubMed  Google Scholar 

  28. Serrill JD, Sander M, Shih HP. Pancreatic exocrine tissue architecture and integrity are maintained by e-cadherin during postnatal development. Sci Rep. 2018;8:13451.

    PubMed  PubMed Central  Google Scholar 

  29. Mayerle J, Schnekenburger J, Kruger B, et al. Extracellular cleavage of E-cadherin by leukocyte elastase during acute experimental pancreatitis in rats. Gastroenterology. 2005;129:1251–1267.

    CAS  PubMed  Google Scholar 

  30. Virtanen JA, Vartiainen MK. Diverse functions for different forms of nuclear actin. Curr Opin Cell Biol. 2017;46:33.

    CAS  PubMed  Google Scholar 

  31. Gunning PW, Ghoshdastider U, Whitaker S, et al. The evolution of compositionally and functionally distinct actin filaments. J Cell Sci. 2015;128:2009–2019.

    CAS  PubMed  Google Scholar 

  32. Yuan S, Rosenberg L, Ilieva A, et al. Early changes of gene expression during cerulein supramaximal stimulation. Pancreas. 1999;19:45.

    CAS  PubMed  Google Scholar 

  33. Yan Z, Gao J, Lv X, et al. Quantitative evaluation and selection of reference genes for quantitative RT-PCR in mouse acute pancreatitis. Biomed Res Int. 2016;2016:2016.

    Google Scholar 

  34. Naor D. CD44: structure, function, and association with the malignant process. Adv Cancer Res.. 1997;71:241–319.

    CAS  PubMed  Google Scholar 

  35. Durko L, Wlodarski W, Stasikowskakanicka O, et al. Expression and clinical significance of cancer stem cell markers CD24, CD44, and CD133 in pancreatic ductal adenocarcinoma and chronic pancreatitis. Dis Mark. 2017; 3276806

  36. Jiang W, Zhang Y, Kane KT, et al. CD44 regulates pancreatic cancer invasion through MT1-MMP. Mol Cancer Res. 2015;13:9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ziegler WH, Liddington RC, Critchley DR. The structure and regulation of vinculin. Trends Cell Biol. 2006;16:453–460.

    CAS  PubMed  Google Scholar 

  38. Shi X, Guo X, Li X, et al. Loss of Linc01060 induces pancreatic cancer progression through vinculin-mediated focal adhesion turnover. Cancer Lett. 2018;31:10–20.

    Google Scholar 

  39. Reichert M, Takano S, Burstin JV, et al. The Prrx1 homeodomain transcription factor plays a central role in pancreatic regeneration and carcinogenesis. Genes Dev. 2013;27:288–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen NM, Singh G, Koenig A, et al. NFATc1 Links EGFR signaling to induction of Sox9 transcription and acinar-ductal transdifferentiation in the pancreas. Gastroenterology. 2015;148:1024–1034.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lankisch PG, Breuer N, Bruns A, et al. Natural history of acute pancreatitis: a long-term population-based study. Am J Gastroenterol. 2009;104:2797–2805.

    PubMed  Google Scholar 

  42. Pang Y, Kartsonaki C, Turnbull I, et al. Metabolic and lifestyle risk factors for acute pancreatitis in Chinese adults: a prospective cohort study of 0.5 million people. PLoS Med. 2018;15:e1002618.

    PubMed  PubMed Central  Google Scholar 

  43. KirkegÅRd J, Cronin-Fenton D, Heide-JØRgensen U, et al. Acute pancreatitis and pancreatic cancer risk: a nationwide matched-cohort study in denmark. Gastroenterology. 2018;154:1729.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Hui, X., Mao, Y. et al. Identification of Acute Pancreatitis-Related Genes and Pathways by Integrated Bioinformatics Analysis. Dig Dis Sci 65, 1720–1732 (2020). https://doi.org/10.1007/s10620-019-05928-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05928-5

Keywords

Navigation