Skip to main content

Advertisement

Log in

Inhibition of TUG1/miRNA-299-3p Axis Represses Pancreatic Cancer Malignant Progression via Suppression of the Notch1 Pathway

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

Taurine-upregulated gene 1 (TUG1) is reported to be upregulated and contributes to the progression of Pancreatic cancer (PC) by serving as an oncogene. Our aims were to explore the precise mechanism of TUG1 involved in PC pathogenesis.

Methods

TUG1 and miR-299-3p expression profiles were measured by qRT-PCR. The direct interaction between TUG1 and miR-299-3p was explored by luciferase reporter assay. MTT assay, flow cytometry analysis, caspase-3 activity assay, Transwell invasion assay and wound healing assay were performed to evaluate cell proliferative ability, apoptosis, caspase-3 activity, invasion and migration, respectively. Western blot was conducted to examine the expressions of Ki67, Bax, Bcl-2, matrix metalloproteinase-2 (MMP-2), MMP-9, E-cadherin, N-cadherin, Snail, Notch1, Survivin, and CyclinD1. In addition, animal experiments were also implemented.

Results

TUG1 was highly expressed, while miR-299-3p was underexpressed in PC tissues and PC cells. Furthermore, the significant increase of TUG1 in PC tissues of advanced patients (stage 3/4) was observed compared to patients (stage 1/2). TUG1 was negatively correlated with miR-299-3p expression in PC tissues. Moreover, TUG1 functioned as a molecular sponge of miR-299-3p to repress its expression. TUG1 knockdown suppressed cell proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT), and induced apoptosis in PC cells, and repressed tumor growth and EMT in PC xenograft models, which were reversed following reintroduction with anti-miR-299-3p. Furthermore, we found that TUG1 silencing inactivated the Notch1 pathway in PC by upregulating miR-299-3p.

Conclusions

The results reported that inhibition of TUG1/miR-299-3p axis suppressed PC malignant progression via suppression of the Notch1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garrido-Laguna I, Hidalgo M. Pancreatic cancer: from state-of-the-art treatments to promising novel therapies. Nat Rev Clin Oncol. 2015;12(6):319–334.

    Article  CAS  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2018;68(1):7–30.

    Article  Google Scholar 

  3. Li D, Xie K, Wolff R, et al. Pancreatic cancer. Lancet. 2004;363(9414):1049–1057.

    Article  CAS  Google Scholar 

  4. Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29(4):452–463.

    Article  CAS  Google Scholar 

  5. Li J, Meng H, Bai Y, et al. Regulation of lncRNA and its role in cancer metastasis. Oncol Res. 2016;23(5):205–217.

    Article  Google Scholar 

  6. Evans JR, Feng FY, Chinnaiyan AM. The bright side of dark matter: lncRNAs in cancer. J Clin Invest. 2016;126(8):2775–2782.

    Article  Google Scholar 

  7. Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009;106(28):11667–11672.

    Article  CAS  Google Scholar 

  8. Li Z, Shen J, Chan MT, et al. TUG1: a pivotal oncogenic long non-coding RNA of human cancers. Cell Prolif. 2016;49(4):471–475.

    Article  CAS  Google Scholar 

  9. Hui B, Xu Y, Zhao B, et al. Overexpressed long noncoding RNA TUG1 affects the cell cycle, proliferation, and apoptosis of pancreatic cancer partly through suppressing RND3 and MT2A. Onco Targets Ther. 2019;12:1043–1057.

    Article  CAS  Google Scholar 

  10. Lu Y, Tang L, Zhang Z, et al. Long noncoding RNA TUG1/miR-29c axis affects cell proliferation, invasion, and migration in human pancreatic cancer. Dis Mak. 2018;2018:6857042.

    Google Scholar 

  11. Qin CF, Zhao FL. Long non-coding RNA TUG1 can promote proliferation and migration of pancreatic cancer via EMT pathway. Eur Rev Med Pharmacol Sci. 2017;21(10):2377–2384.

    PubMed  Google Scholar 

  12. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610.

    Article  CAS  Google Scholar 

  13. Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol. 2009;27(34):5848–5856.

    Article  CAS  Google Scholar 

  14. Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):358–369.

    Article  CAS  Google Scholar 

  15. Liu X, He M, Hou Y, et al. Expression profiles of microRNAs and their target genes in papillary thyroid carcinoma. Oncol Rep. 2013;29(4):1415–1420.

    Article  CAS  Google Scholar 

  16. He H, Wang L, Zhou W, et al. MicroRNA expression profiling in clear cell renal cell carcinoma: identification and functional validation of key miRNAs. PLoS One. 2015;10(5):e0125672.

    Article  Google Scholar 

  17. Cheng YU, Li H, Li J, et al. O-GlcNAcylation enhances anaplastic thyroid carcinoma malignancy. Oncol Lett. 2016;12(1):572–578.

    Article  CAS  Google Scholar 

  18. Katsushima K, Natsume A, Ohka F, et al. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat Commun. 2016;7:13616.

    Article  Google Scholar 

  19. Cheng D, Fan J, Ma Y, et al. LncRNA SNHG7 promotes pancreatic cancer proliferation through ID4 by sponging miR-342-3p. Cell Biosci. 2019;9:28.

    Article  Google Scholar 

  20. Yue L, Guo J. LncRNA TUSC7 suppresses pancreatic carcinoma progression by modulating miR-371a-5p expression. J Cell Physiol. 2019;1(2):1–3. https://doi.org/10.1002/jcp.28248.

    Article  CAS  Google Scholar 

  21. Feng H, Wei B, Zhang Y. Long non-coding RNA HULC promotes proliferation, migration and invasion of pancreatic cancer cells by down-regulating microRNA-15a. Int J Biol Macromol. 2019;126:891–898.

    Article  CAS  Google Scholar 

  22. Wang L, Zhao Z, Feng W, et al. Long non-coding RNA TUG1 promotes colorectal cancer metastasis via EMT pathway. Oncotarget. 2016;7(32):51713–51719.

    Article  Google Scholar 

  23. Zhang Q, Geng PL, Yin P, et al. Down-regulation of long non-coding RNA TUG1 inhibits osteosarcoma cell proliferation and promotes apoptosis. Asian Pac J Cancer Prev. 2013;14(4):2311–2315.

    Article  Google Scholar 

  24. Yang XL, Wei C, Zhang YB, et al. Long noncoding RNA TUG1 promotes progression via upregulating DGCR1 in prostate cancer. Eur Rev Med Pharmacol Sci. 2019;23(6):2391–2398.

    PubMed  Google Scholar 

  25. Zhang EB, Yin DD, Sun M, et al. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis. 2014;5:e1243.

    Article  CAS  Google Scholar 

  26. Fan S, Yang Z, Ke Z, et al. Downregulation of the long non-coding RNA TUG1 is associated with cell proliferation, migration, and invasion in breast cancer. Biomed Pharmacother. 2017;95:1636–1643.

    Article  CAS  Google Scholar 

  27. Yin DD, Zhang EB, You LH, et al. Downregulation of lncRNA TUG1 affects apoptosis and insulin secretion in mouse pancreatic beta cells. Cell Physiol Biochem. 2015;35(5):1892–1904.

    Article  CAS  Google Scholar 

  28. Yang F, Li X, Zhang L, et al. LncRNA TUG1 promoted viability and associated with gemcitabine resistant in pancreatic ductal adenocarcinoma. J Pharmacol Sci. 2018;137(2):116–121.

    Article  CAS  Google Scholar 

  29. Zhao L, Sun H, Kong H, et al. The Lncrna-TUG1/EZH2 axis promotes pancreatic cancer cell proliferation, migration and EMT phenotype formation through sponging Mir-382. Cell Physiol Biochem. 2017;42(6):2145–2158.

    Article  CAS  Google Scholar 

  30. Chen X, Qi M, Yang Q, et al. MiR-299-3p functions as a tumor suppressor in thyroid cancer by regulating SHOC2. Eur Rev Med Pharmacol Sci. 2019;23(1):232–240.

    CAS  PubMed  Google Scholar 

  31. Dang S, Zhou J, Wang Z, et al. MiR-299-3p functions as a tumor suppressor via targeting Sirtuin 5 in hepatocellular carcinoma. Biomed Pharmacother. 2018;106:966–975.

    Article  CAS  Google Scholar 

  32. Wang JY, Jiang JB, Li Y, et al. MicroRNA-299-3p suppresses proliferation and invasion by targeting VEGFA in human colon carcinoma. Biomed Pharmacother. 2017;93:1047–1054.

    Article  CAS  Google Scholar 

  33. Zhao R, Liu Q, Lou C. MicroRNA-299-3p regulates proliferation, migration and invasion of human ovarian cancer cells by modulating the expression of OCT4. Arch Biochem Biophys. 2018;651:21–27.

    Article  CAS  Google Scholar 

  34. Gordon WR, Arnett KL, Blacklow SC. The molecular logic of Notch signaling—a structural and biochemical perspective. J Cell Sci. 2008;121(Pt 19):3109–3119.

    Article  CAS  Google Scholar 

  35. Takebe N, Harris PJ, Warren RQ, et al. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011;8(2):97–106.

    Article  CAS  Google Scholar 

  36. Miyamoto Y, Maitra A, Ghosh B, et al. Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell. 2003;3(6):565–576.

    Article  CAS  Google Scholar 

  37. Hu H, Zhou L, Awadallah A, et al. Significance of Notch1-signaling pathway in human pancreatic development and carcinogenesis. Appl Immunohistochem Mol Morphol. 2013;21(3):242–247.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao J, Long B, Wang Z. Role of Notch signaling pathway in pancreatic cancer. Am J Cancer Res. 2017;7(2):173–186.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee JY, Song SY, Park JY. Notch pathway activation is associated with pancreatic cancer treatment failure. Pancreatology. 2014;14(1):48–53.

    Article  CAS  Google Scholar 

  40. Mysliwiec P, Boucher MJ. Targeting Notch signaling in pancreatic cancer patients–rationale for new therapy. Adv Med Sci. 2009;54(2):136–142.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

No.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianfeng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Zhang, L. Inhibition of TUG1/miRNA-299-3p Axis Represses Pancreatic Cancer Malignant Progression via Suppression of the Notch1 Pathway. Dig Dis Sci 65, 1748–1760 (2020). https://doi.org/10.1007/s10620-019-05911-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05911-0

Keywords

Navigation