Skip to main content

Advertisement

Log in

Differential Regulation of EGFR–MAPK Signaling by Deoxycholic Acid (DCA) and Ursodeoxycholic Acid (UDCA) in Colon Cancer

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

A high-fat diet coincides with increased levels of bile acids. This increase in bile acids, particularly deoxycholic acid (DCA), has been strongly associated with the development of colon cancer. Conversely, ursodeoxycholic acid (UDCA) may have chemopreventive properties. Although structurally similar, DCA and UDCA present different biological and pathological effects in colon cancer progression. The differential regulation of cancer by these two bile acids is not yet fully understood. However, one possible explanation for their diverging effects is their ability to differentially regulate signaling pathways involved in the multistep progression of colon cancer, such as the epidermal growth factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) pathway. This review will examine the biological effects of DCA and UDCA on colon cancer development, as well as the diverging effects of these bile acids on the oncogenic signaling pathways that play a role in colon cancer development, with a particular emphasis on bile acid regulation of the EGFR–MAPK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

15-PGDH:

15-Hydroxyprostaglandin dehydrogenase

AKT:

Protein kinase B

AOM:

Azoxymethane

AP-1:

Activator protein 1

AR:

Amphiregulin

ATF-2:

Activating transcription factor 2

BRE:

Brain and reproductive organ-expressed protein

CA:

Cholic acid

CCK:

Cholecystokinin

CDCA:

Chenodeoxycholic acid

CDK2:

Cyclin-dependent kinase 2

COX-2:

Cyclooxygenase-2

CYP7a:

Cholesterol 7 alpha-hydroxylase

DSH:

Disheveled

EGFR:

Epidermal growth factor receptor

ELK-1:

E twenty six-like transcription factor 1

ERK1/2:

Extracellular signal-regulated kinases 1 and 2

FXR-α:

Farnesoid X receptor-alpha

GCDC:

Glycochenodeoxycholate

GUDCA:

Glycoursodeoxycholate

HDAC6:

Histone deacetylase 6

HIF-1α:

Hypoxia-inducible factor 1 alpha

IAP:

Intestinal alkaline phosphatase

IκBα:

Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha

IL-8:

Interleukin 8

Irs-1:

Insulin receptor substrate 1

JNK:

c-Jun N-terminal kinase

LCA:

Lithocholic acid

MAPK:

Mitogen-activated protein kinase

MDM2:

Murine double minute 2

MMP-9:

Matrix metallopeptidase 9

MNNG:

N-Methyl-N′-nitro-N-nitrosoguanidine

MUC2:

Mucin 2

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

Nur77:

Nuclear receptor subfamily 4 group A member 1

PARP:

Poly (ADP-ribose) polymerase

PGE2:

Prostaglandin E2

PI3K:

Phosphatidylinositol 3-kinase

PKC:

Protein kinase C

PLA2:

Phospholipase A2

PXR:

Pregnane X receptor

ROS:

Reactive oxygen species

TCA:

Taurocholic acid

TCDC:

Taurochenodeoxycholate

TDCA:

Taurodeoxycholic acid

TGF-α:

Transforming growth factor alpha

TGR5:

G Protein-coupled receptor

TUDCA:

Tauroursodeoxycholate

uPA:

Urokinase-type plasminogen activator

uPAR:

Urokinase-type plasminogen activator receptor

VDR:

Vitamin D receptor

VEGF:

Vascular endothelial growth factor

References

  1. Enhsen A, Kramer W, Wess GN. Bile acids in drug discovery. Drug Discovery Today. 1998;3:409–418.

    Article  CAS  Google Scholar 

  2. Hismiogullari AA, Bozdayi AM, Rahman K. Biliary lipid secretion. Turk J Gastroenterol. 2007;18:65–70.

    PubMed  Google Scholar 

  3. Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P. Bile acids as regulatory molecules. J Lipid Res. 2009;50:1509–1520.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Fukiya S, Arata M, Kawashima H, et al. Conversion of cholic acid and chenodeoxycholic acid into their 7-oxo derivatives by bacteroides intestinalis am-1 isolated from human feces. FEMS Microbiol Lett. 2009;293:263–270.

    Article  PubMed  CAS  Google Scholar 

  5. Odermatt A, Da Cunha T, Penno CA, et al. Hepatic reduction of the secondary bile acid 7-oxolithocholic acid is mediated by 11 beta-hydroxysteroid dehydrogenase 1. Biochem J. 2011;436:621–629.

    Article  PubMed  CAS  Google Scholar 

  6. Powell AA, LaRue JM, Batta AK, Martinez JD. Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in hct116 cells. Biochem J. 2001;356:481–486.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Jean-Louis S, Akare S, Ali MA, Mash EA Jr, Meuillet E, Martinez JD. Deoxycholic acid induces intracellular signaling through membrane perturbations. J Biol Chem. 2006;281:14948–14960.

    Article  PubMed  CAS  Google Scholar 

  8. Martinez JD, Stratagoules ED, LaRue JM, et al. Different bile acids exhibit distinct biological effects: the tumor promoter deoxycholic acid induces apoptosis and the chemopreventive agent ursodeoxycholic acid inhibits cell proliferation. Nutr Cancer. 1998;31:111–118.

    Article  PubMed  CAS  Google Scholar 

  9. Ikegami T, Matsuzaki Y, Shoda J, Kano M, Hirabayashi N, Tanaka N. The chemopreventive role of ursodeoxycholic acid in azoxymethane-treated rats: suppressive effects on enhanced group ii phospholipase a2 expression in colonic tissue. Cancer Lett. 1998;134:129–139.

    Article  PubMed  CAS  Google Scholar 

  10. Araki Y, Andoh A, Bamba H, et al. The cytotoxicity of hydrophobic bile acids is ameliorated by more hydrophilic bile acids in intestinal cell lines iec-6 and caco-2. Oncol Rep. 2003;10:1931–1936.

    PubMed  CAS  Google Scholar 

  11. Cook JW, Kennaway EL, Kennaway NM. Production of tumours in mice by deoxycholic acid. Nature. 1940;145:627.

    Article  CAS  Google Scholar 

  12. Narisawa T, Magadia NE, Weisburger JH, Wynder EL. Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of n-methyl-n’-nitro-n-nitrosoguanidine in rats. J Natl Cancer Inst. 1974;53:1093–1097.

    PubMed  CAS  Google Scholar 

  13. Reddy BS, Watanabe K, Weisburger JH, Wynder EL. Promoting effect of bile acids in colon carcinogenesis in germ-free and conventional f344 rats. Cancer Res. 1977;37:3238–3242.

    PubMed  CAS  Google Scholar 

  14. Reddy BS, Narasawa T, Weisburger JH, Wynder EL. Promoting effect of sodium deoxycholate on colon adenocarcinomas in germfree rats. J Natl Cancer Inst. 1976;56:441–442.

    PubMed  CAS  Google Scholar 

  15. Ou J, DeLany JP, Zhang M, Sharma S, O’Keefe SJ. Association between low colonic short-chain fatty acids and high bile acids in high colon cancer risk populations. Nutr Cancer. 2012;64:34–40.

    Article  PubMed  CAS  Google Scholar 

  16. Gordon SJ, Miller LJ, Haeffner LJ, Kinsey MD, Kowlessar OD. Abnormal intestinal bile acid distribution in azotaemic man: a possible role in the pathogenesis of uraemic diarrhoea. Gut. 1976;17:58–67.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47:241–259.

    Article  PubMed  CAS  Google Scholar 

  18. Bayerdorffer E, Mannes GA, Richter WO, et al. Increased serum deoxycholic acid levels in men with colorectal adenomas. Gastroenterology. 1993;104:145–151.

    PubMed  CAS  Google Scholar 

  19. Ochsenkuhn T, Bayerdorffer E, Meining A, et al. Colonic mucosal proliferation is related to serum deoxycholic acid levels. Cancer. 1999;85:1664–1669.

    Article  PubMed  CAS  Google Scholar 

  20. Bartram HP, Scheppach W, Schmid H, et al. Proliferation of human colonic mucosa as an intermediate biomarker of carcinogenesis: effects of butyrate, deoxycholate, calcium, ammonia, and ph. Cancer Res. 1993;53:3283–3288.

    PubMed  CAS  Google Scholar 

  21. Deschner EE, Cohen BI, Raicht RF. Acute and chronic effect of dietary cholic acid on colonic epithelial cell proliferation. Digestion. 1981;21:290–296.

    Article  PubMed  CAS  Google Scholar 

  22. McMillan L, Butcher S, Wallis Y, Neoptolemos JP, Lord JM. Bile acids reduce the apoptosis-inducing effects of sodium butyrate on human colon adenoma (aa/c1) cells: implications for colon carcinogenesis. Biochem Biophys Res Commun. 2000;273:45–49.

    Article  PubMed  CAS  Google Scholar 

  23. Earnest DL, Holubec H, Wali RK, et al. Chemoprevention of azoxymethane-induced colonic carcinogenesis by supplemental dietary ursodeoxycholic acid. Cancer Res. 1994;54:5071–5074.

    PubMed  CAS  Google Scholar 

  24. Pardi DS, Loftus EV Jr, Kremers WK, Keach J, Lindor KD. Ursodeoxycholic acid as a chemopreventive agent in patients with ulcerative colitis and primary sclerosing cholangitis. Gastroenterology. 2003;124:889–893.

    Article  PubMed  CAS  Google Scholar 

  25. Tung BY, Emond MJ, Haggitt RC, et al. Ursodiol use is associated with lower prevalence of colonic neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. Ann Intern Med. 2001;134:89–95.

    Article  PubMed  CAS  Google Scholar 

  26. Alberts DS, Martinez ME, Hess LM, et al. Phase iii trial of ursodeoxycholic acid to prevent colorectal adenoma recurrence. J Natl Cancer Inst. 2005;97:846–853.

    Article  PubMed  CAS  Google Scholar 

  27. Serfaty L, De Leusse A, Rosmorduc O, et al. Ursodeoxycholic acid therapy and the risk of colorectal adenoma in patients with primary biliary cirrhosis: an observational study. Hepatology. 2003;38:203–209.

    Article  PubMed  CAS  Google Scholar 

  28. Thompson PA, Wertheim BC, Roe DJ, et al. Gender modifies the effect of ursodeoxycholic acid in a randomized controlled trial in colorectal adenoma patients. Cancer Prev Res (Phila). 2009;2:1023–1030.

    Article  CAS  Google Scholar 

  29. Gielen J, Van Cantfort J. Role of bile acids in the regulation of cholesterol 7 alpha-hydroxylase. Arch Int Physiol Biochim. 1969;77:965–966.

    PubMed  CAS  Google Scholar 

  30. Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–1365.

    Article  PubMed  CAS  Google Scholar 

  31. Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284:1365–1368.

    Article  PubMed  CAS  Google Scholar 

  32. Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor fxr/bar. Mol Cell. 1999;3:543–553.

    Article  PubMed  CAS  Google Scholar 

  33. Staudinger JL, Goodwin B, Jones SA, et al. The nuclear receptor pxr is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U S A. 2001;98:3369–3374.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Xie W, Radominska-Pandya A, Shi Y, et al. An essential role for nuclear receptors sxr/pxr in detoxification of cholestatic bile acids. Proc Natl Acad Sci U S A. 2001;98:3375–3380.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Makishima M, Lu TT, Xie W, et al. Vitamin d receptor as an intestinal bile acid sensor. Science. 2002;296:1313–1316.

    Article  PubMed  CAS  Google Scholar 

  36. Logan CY, Nusse R. The wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    Article  PubMed  CAS  Google Scholar 

  37. Taketo MM. Shutting down wnt signal-activated cancer. Nat Genet. 2004;36:320–322.

    Article  PubMed  CAS  Google Scholar 

  38. Pai R, Tarnawski AS, Tran T. Deoxycholic acid activates beta-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol Biol Cell. 2004;15:2156–2163.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Wu H, Lin Y, Li W, et al. Regulation of nur77 expression by beta-catenin and its mitogenic effect in colon cancer cells. FASEB J. 2011;25:192–205.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. Eur J Cancer. 2001;37:S9–S15.

    Article  PubMed  CAS  Google Scholar 

  41. Lee HY, Crawley S, Hokari R, Kwon S, Kim YS. Bile acid regulates muc2 transcription in colon cancer cells via positive egfr/pkc/ras/erk/creb, pi3 k/akt/ikappab/nf-kappab and p38/msk1/creb pathways and negative jnk/c-jun/ap-1 pathway. Int J Oncol. 2010;36:941–953.

    PubMed  CAS  Google Scholar 

  42. Im E, Akare S, Powell A, Martinez JD. Ursodeoxycholic acid can suppress deoxycholic acid-induced apoptosis by stimulating akt/pkb-dependent survival signaling. Nutr Cancer. 2005;51:110–116.

    Article  PubMed  CAS  Google Scholar 

  43. Saeki T, Yui S, Hirai T, Fujii T, Okada S, Kanamoto R. Ursodeoxycholic acid protects colon cancer hct116 cells from deoxycholic acid-induced apoptosis by inhibiting apoptosome formation. Nutr Cancer. 2012;64:617–626.

    Article  PubMed  CAS  Google Scholar 

  44. Raufman JP, Shant J, Guo CY, Roy S, Cheng K. Deoxycholyltaurine rescues human colon cancer cells from apoptosis by activating egfr-dependent pi3 k/akt signaling. J Cell Physiol. 2008;215:538–549.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Shant J, Cheng K, Marasa BS, Wang JY, Raufman JP. Akt-dependent nf-kappab activation is required for bile acids to rescue colon cancer cells from stress-induced apoptosis. Exp Cell Res. 2009;315:432–450.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Cheng K, Xie G, Raufman JP. Matrix metalloproteinase-7-catalyzed release of hb-egf mediates deoxycholyltaurine-induced proliferation of a human colon cancer cell line. Biochem Pharmacol. 2007;73:1001–1012.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Khare S, Mustafi R, Cerda S, et al. Ursodeoxycholic acid suppresses cox-2 expression in colon cancer: roles of ras, p38, and ccaat/enhancer-binding protein. Nutr Cancer. 2008;60:389–400.

    Article  PubMed  CAS  Google Scholar 

  48. Im E, Martinez JD. Ursodeoxycholic acid (udca) can inhibit deoxycholic acid (dca)-induced apoptosis via modulation of egfr/raf-1/erk signaling in human colon cancer cells. J Nutr. 2004;134:483–486.

    PubMed  CAS  Google Scholar 

  49. Shah SA, Volkov Y, Arfin Q, Abdel-Latif MM, Kelleher D. Ursodeoxycholic acid inhibits interleukin beta 1 and deoxycholic acid-induced activation of nf-κb and ap-1 in human colon cancer cells. Int J Cancer. 2006;118:532–539.

    Article  PubMed  CAS  Google Scholar 

  50. Yoo J, Rodriguez Perez CE, Nie W, Edwards RA, Sinnett-Smith J, Rozengurt E. Tnf-alpha induces upregulation of egfr expression and signaling in human colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol. 2012;302:G805–G814.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Hobbs SS, Goettel JA, Liang D, et al. Tnf transactivation of egfr stimulates cytoprotective cox-2 expression in gastrointestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2011;301:G220–G229.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Qiao D, Gaitonde SV, Qi W, Martinez JD. Deoxycholic acid suppresses p53 by stimulating proteasome-mediated p53 protein degradation. Carcinogenesis. 2001;22:957–964.

    Article  PubMed  CAS  Google Scholar 

  53. Song S, Byrd JC, Koo JS, Bresalier RS. Bile acids induce muc2 overexpression in human colon carcinoma cells. Cancer. 2005;103:1606–1614.

    Article  PubMed  CAS  Google Scholar 

  54. Powell AA, Akare S, Qi W, et al. Resistance to ursodeoxycholic acid-induced growth arrest can also result in resistance to deoxycholic acid-induced apoptosis and increased tumorigenicity. BMC Cancer. 2006;6:219.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Qiao D, Chen W, Stratagoules ED, Martinez JD. Bile acid-induced activation of activator protein-1 requires both extracellular signal-regulated kinase and protein kinase c signaling. J Biol Chem. 2000;275:15090–15098.

    Article  PubMed  CAS  Google Scholar 

  56. Shah SA, Looby E, Volkov Y, Long A, Kelleher D. Ursodeoxycholic acid inhibits translocation of protein kinase c in human colonic cancer cell lines. Eur J Cancer. 2005;41:2160–2169.

    Article  PubMed  CAS  Google Scholar 

  57. Shah SA, Mahmud N, Mftah M, Roche HM, Kelleher D. Chronic but not acute conjugated linoleic acid treatment inhibits deoxycholic acid-induced protein kinase c and nuclear factor-kappab activation in human colorectal cancer cells. Eur J Cancer Prev. 2006;15:125–133.

    Article  PubMed  CAS  Google Scholar 

  58. Qiao L, Studer E, Leach K, et al. Deoxycholic acid (dca) causes ligand-independent activation of epidermal growth factor receptor (egfr) and fast receptor in primary hepatocytes: inhibition of egfr/mitogen-activated protein kinase-signaling module enhances dca-induced apoptosis. Mol Biol Cell. 2001;12:2629–2645.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Rao YP, Studer EJ, Stravitz RT, et al. Activation of the raf-1/mek/erk cascade by bile acids occurs via the epidermal growth factor receptor in primary rat hepatocytes. Hepatology. 2002;35:307–314.

    Article  PubMed  CAS  Google Scholar 

  60. Yoon JH, Higuchi H, Werneburg NW, Kaufmann SH, Gores GJ. Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line. Gastroenterology. 2002;122:985–993.

    Article  PubMed  CAS  Google Scholar 

  61. Werneburg NW, Yoon JH, Higuchi H, Gores GJ. Bile acids activate egf receptor via a tgf-alpha-dependent mechanism in human cholangiocyte cell lines. Am J Physiol Gastrointest Liver Physiol. 2003;285:G31–G36.

    PubMed  CAS  Google Scholar 

  62. Yoon JH, Werneburg NW, Higuchi H, et al. Bile acids inhibit mcl-1 protein turnover via an epidermal growth factor receptor/raf-1-dependent mechanism. Cancer Res. 2002;62:6500–6505.

    PubMed  CAS  Google Scholar 

  63. Goldman A, Chen HD, Roesly HB, et al. Characterization of squamous esophageal cells resistant to bile acids at acidic ph: implication for barrett’s esophagus pathogenesis. Am J Physiol Gastrointest Liver Physiol. 2011;300:G292–G302.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Avissar NE, Toia L, Hu Y, et al. Bile acid alone, or in combination with acid, induces cdx2 expression through activation of the epidermal growth factor receptor (egfr). J Gastrointest Surg. 2009;13:212–222.

    Article  PubMed  Google Scholar 

  65. Yasuda H, Hirata S, Inoue K, Mashima H, Ohnishi H, Yoshiba M. Involvement of membrane-type bile acid receptor m-bar/tgr5 in bile acid-induced activation of epidermal growth factor receptor and mitogen-activated protein kinases in gastric carcinoma cells. Biochem Biophys Res Commun. 2007;354:154–159.

    Article  PubMed  CAS  Google Scholar 

  66. Qiao D, Stratagouleas ED, Martinez JD. Activation and role of mitogen-activated protein kinases in deoxycholic acid-induced apoptosis. Carcinogenesis. 2001;22:35–41.

    Article  PubMed  CAS  Google Scholar 

  67. Keating N, Mroz MS, Scharl MM, et al. Physiological concentrations of bile acids down-regulate agonist induced secretion in colonic epithelial cells. J Cell Mol Med. 2009;13:2293–2303.

    Article  PubMed  Google Scholar 

  68. Akare S, Martinez JD. Bile acid induces hydrophobicity-dependent membrane alterations. Biochim Biophys Acta. 2005;1735:59–67.

    Article  PubMed  CAS  Google Scholar 

  69. Rao YP, Stravitz RT, Vlahcevic ZR, Gurley EC, Sando JJ, Hylemon PB. Activation of protein kinase c alpha and delta by bile acids: correlation with bile acid structure and diacylglycerol formation. J Lipid Res. 1997;38:2446–2454.

    PubMed  CAS  Google Scholar 

  70. Looby E, Long A, Kelleher D, Volkov Y. Bile acid deoxycholate induces differential subcellular localisation of the pkc isoenzymes beta 1, epsilon and delta in colonic epithelial cells in a sodium butyrate insensitive manner. Int J Cancer. 2005;114:887–895.

    Article  PubMed  CAS  Google Scholar 

  71. Fang Y, Han SI, Mitchell C, et al. Bile acids induce mitochondrial ros, which promote activation of receptor tyrosine kinases and signaling pathways in rat hepatocytes. Hepatology. 2004;40:961–971.

    Article  PubMed  CAS  Google Scholar 

  72. Cronin J, Williams L, McAdam E, et al. The role of secondary bile acids in neoplastic development in the oesophagus. Biochem Soc Trans. 2010;38:337–342.

    Article  PubMed  CAS  Google Scholar 

  73. Jenkins GJS, D’Souza FR, Suzen SH, et al. Deoxycholic acid at neutral and acid ph, is genotoxic to oesophageal cells through the induction of ROS: the potential role of anti-oxidants in Barrett’s oesophagus. Carcinogenesis. 2006;28:136–142.

  74. Ignacio Barrasa J, Olmo N, Perez-Ramos P, et al. Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells. Apoptosis. 2011;16:1054–1067.

    Article  PubMed  Google Scholar 

  75. Feldman R, Martinez JD. Growth suppression by ursodeoxycholic acid involves caveolin-1 enhanced degradation of egfr. Biochim Biophys Acta. 2009;1793:1387–1394.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Ha YH, Park DG. Effects of dca on cell cycle proteins in colonocytes. J Korean Soc Coloproctol. 2010;26:254–259.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mason RP, Moisey DM, Shajenko L. Cholesterol alters the binding of ca2 + channel blockers to the membrane lipid bilayer. Mol Pharmacol. 1992;41:315–321.

    PubMed  CAS  Google Scholar 

  78. Smith AF, Longpre J, Loo G. Inhibition by zinc of deoxycholate-induced apoptosis in hct-116 cells. J Cell Biochem. 2012;113:650–657.

    Article  PubMed  CAS  Google Scholar 

  79. Longpre J, Loo G. Inhibition of deoxycholate-induced apoptosis in iron-depleted hct-116 cells. Apoptosis. 2012;17:70–78.

    Article  PubMed  CAS  Google Scholar 

  80. Di Toro R, Campana G, Murari G, Spampinato S. Effects of specific bile acids on c-fos messenger rna levels in human colon carcinoma caco-2 cells. Eur J Pharm Sci. 2000;11:291–298.

    Article  PubMed  Google Scholar 

  81. Kim HS, Lee YK, Kim JW, Baik SK, Kwon SO, Jang HI. Modulation of colon cancer cell invasiveness induced by deoxycholic acid. Korean J Gastroenterol. 2006;48:9–18.

    PubMed  Google Scholar 

  82. Lee DK, Park SY, Baik SK, et al. Deoxycholic acid-induced signal transduction in ht-29 cells: role of nf-kappa b and interleukin-8. Korean J Gastroenterol. 2004;43:176–185.

    PubMed  Google Scholar 

  83. Zeng H, Botnen JH, Briske-Anderson M. Deoxycholic acid and selenium metabolite methylselenol exert common and distinct effects on cell cycle, apoptosis, and map kinase pathway in hct116 human colon cancer cells. Nutr Cancer. 2009;62:85–92.

    Article  Google Scholar 

  84. McMillan L, Butcher SK, Pongracz J, Lord JM. Opposing effects of butyrate and bile acids on apoptosis of human colon adenoma cells: differential activation of pkc and map kinases. Br J Cancer. 2003;88:748–753.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Krishna-Subramanian S, Hanski ML, Loddenkemper C, et al. Udca slows down intestinal cell proliferation by inducing high and sustained erk phosphorylation. Int J Cancer. 2012;130:2771–2782.

    Article  PubMed  CAS  Google Scholar 

  86. Miyaki A, Yang P, Tai H-H, Subbaramaiah K, Dannenberg AJ. Bile acids inhibit nad + -dependent 15-hydroxyprostaglandin dehydrogenase transcription in colonocytes. Am J Physiol Gastrointest Liver Physiol. 2009;297:G559–G566.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Merchant NB, Rogers CM, Trivedi B, Morrow J, Coffey RJ. Ligand-dependent activation of the epidermal growth factor receptor by secondary bile acids in polarizing colon cancer cells. Surgery. 2005;138:415–421.

    Article  PubMed  Google Scholar 

  88. Akare S, Jean-Louis S, Chen W, Wood DJ, Powell AA, Martinez JD. Ursodeoxycholic acid modulates histone acetylation and induces differentiation and senescence. Int J Cancer. 2006;119:2958–2969.

    Article  PubMed  CAS  Google Scholar 

  89. Da Silva M, Jaggers GK, Verstraeten SV, Erlejman AG, Fraga CG, Oteiza PI. Large procyanidins prevent bile-acid-induced oxidant production and membrane-initiated erk1/2, p38, and akt activation in caco-2 cells. Free Radic Biol Med. 2012;52:151–159.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Cecil J. Gomes, BS, who assisted in the editing of this manuscript and also to Josh Brownlee, BS, for assistance with production of 3-dimensional figures. This work was supported by the RO1 CA129688 and the minority supplement CA129688 S1 awarded by the National Institute of Health, to Jesse D. Martinez.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse D. Martinez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Centuori, S.M., Martinez, J.D. Differential Regulation of EGFR–MAPK Signaling by Deoxycholic Acid (DCA) and Ursodeoxycholic Acid (UDCA) in Colon Cancer. Dig Dis Sci 59, 2367–2380 (2014). https://doi.org/10.1007/s10620-014-3190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3190-7

Keywords

Navigation