Skip to main content

Advertisement

Log in

Transmural Pressure Loading Enhances Gastric Mucosal Cell Proliferation

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Aim

Although increased intraluminal pressure in the stomach due to gastric outlet obstruction or functional gastric motor dysfunction, including gastroparesis, may affect gastric mucosal integrity, the direct effect of mechanical pressure on gastric mucosal cells has not yet been fully investigated. The aims of this study were to determine whether exposure to transmural pressure would affect the proliferation of gastric mucosal cells and to elucidate the intracellular signaling pathways involved.

Methods

Cellular proliferation and DNA synthesis were evaluated in rat gastric epithelial cells exposed to high transmural pressures. The levels of activation of 3 MAP kinases, ERK, JNK, and p38, were assessed, and the induction of immediate early gene expression was examined. The activation of nuclear factor activator protein-1 (AP-1) was evaluated by an electrophoretic mobility shift assay.

Results

Exposure to high transmural pressure significantly increased DNA synthesis within 24 h, with the most marked increase observed after exposure to a pressure of 80 mmHg, and this increase was inhibited by the MEK1 inhibitor PD98059. Early activation of ERK kinase, but not of JNK or p38 kinase, was detected after pressure loading. Early induction of the c-fos and c-myc genes and activation of the AP-1 transcription factor were also demonstrated within 3 h of exposure to 80 mmHg of pressure.

Conclusion

Gastric mucosal cell proliferation induced by exposure to high transmural pressure may be related to early activation of ERK, the induction of c-fos and c-myc, and the activation of AP-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach. II. Outward migration of pit cells. Anat Rec. 1993;236:280–296.

    Article  PubMed  CAS  Google Scholar 

  2. Suzuki H, Minegishi Y, Nomoto Y, et al. Down-regulation of a morphogen (sonic hedgehog) gradient in the gastric epithelium of Helicobacter pylori-infected Mongolian gerbils. J Pathol. 2005;206:186–197.

    Article  PubMed  CAS  Google Scholar 

  3. Minegishi Y, Suzuki H, Arakawa M, et al. Reduced Shh expression in TFF2-overexpressing lesions of the gastric fundus under hypochlorhydric conditions. J Pathol. 2007;213:161–169.

    Article  PubMed  CAS  Google Scholar 

  4. Lacy ER, Ito S. Rapid epithelial restitution of the rat gastric mucosa after ethanol injury. Lab Invest. 1984;51:573–583.

    PubMed  CAS  Google Scholar 

  5. Tsujii M, Kawano S, Tsuji S, et al. Cell kinetics of mucosal atrophy in rat stomach induced by long-term administration of ammonia. Gastroenterology. 1993;104:796–801.

    PubMed  CAS  Google Scholar 

  6. Hirata K, Suzuki H, Nishizawa T, et al. Contribution of efflux pumps to clarithromycin resistance in Helicobacter pylori. J Gastroenterol Hepatol. 2010;25:S75–S79.

    Article  PubMed  CAS  Google Scholar 

  7. Mogami S, Suzuki H, Fukuhara S, Matsuzaki J, Kangawa K, Hibi T. Reduced ghrelin production induced anorexia after rat gastric ischemia and reperfusion. Am J Physiol Gastrointest Liver Physiol. 2012;302:G359–64.

    Google Scholar 

  8. Iwasaki E, Suzuki H, Masaoka T, et al. Enhanced gastric ghrelin production and secretion in rats with gastric outlet obstruction. Dig Dis Sci. 2011;57:858–864.

    Google Scholar 

  9. Hernanz-Schulman M, Sells LL, Ambrosino MM, Heller RM, Stein SM, Neblett WW III. Hypertrophic pyloric stenosis in the infant without a palpable olive: accuracy of sonographic diagnosis. Radiology. 1994;193:771–776.

    PubMed  CAS  Google Scholar 

  10. Hernanz-Schulman M. Infantile hypertrophic pyloric stenosis. Radiology. 2003;227:319–331.

    Article  PubMed  Google Scholar 

  11. Tack J, Talley NJ, Camilleri M, et al. Functional gastroduodenal disorders. Gastroenterology. 2006;130:1466–1479.

    Article  PubMed  Google Scholar 

  12. Suzuki H, Nishizawa T, Hibi T. Therapeutic strategies for functional dyspepsia and the introduction of the Rome III classification. J Gastroenterol. 2006;41:513–523.

    Article  PubMed  Google Scholar 

  13. Wu SV, Sumii K, Tari A, Mogard M, Walsh JH. Regulation of gastric somatostatin gene expression. Metabolism. 1990;39:125–130.

    Article  PubMed  CAS  Google Scholar 

  14. Dimaline R, Miller SM, Evans D, Noble PJ, Brown P, Poat JA. Expression of immediate early genes in rat gastric myenteric neurones: a physiological response to feeding. J Physiol. 1995;488:493–499.

    PubMed  CAS  Google Scholar 

  15. Lind JF, Duthie HL, Schlegel JF, Code CF. Motility of the gastric fundus. Am J Physiol. 1961;201:197–202.

    PubMed  CAS  Google Scholar 

  16. Thomas PA, Kelly KA. Hormonal control of interdigestive motor cycles of canine proximal stomach. Am J Physiol. 1979;237:191–197.

    PubMed  CAS  Google Scholar 

  17. Kelly KA. Gastric motility after gastric operations. Surg Annu. 1974;6:103–123.

    PubMed  CAS  Google Scholar 

  18. Wilmer A, Van Cutsem E, Andrioli A, Tack J, Coremans G, Janssens J. Ambulatory gastrojejunal manometry in severe motility-like dyspepsia: lack of correlation between dysmotility, symptoms, and gastric emptying. Gut. 1998;42:235–242.

    Article  PubMed  CAS  Google Scholar 

  19. Hirokawa M, Miura S, Shigematsu T, et al. Pressure stimulates proliferation and DNA synthesis in rat intestinal epithelial cells. Life Sci. 1997;61:667–672.

    Article  PubMed  CAS  Google Scholar 

  20. Jo H, Sipos K, Go YM, Law R, Rong J, McDonald JM. Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells. Gi2- and Gbeta/gamma-dependent signaling pathways. J Biol Chem. 1997;272:1395–1401.

    Article  PubMed  CAS  Google Scholar 

  21. MacKenna DA, Dolfi F, Vuori K, Ruoslahti E. Extracellular signal-regulated kinase and c-jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J Clin Invest. 1998;101:301–310.

    Article  PubMed  CAS  Google Scholar 

  22. Yamazaki T, Tobe K, Hoh E, et al. Mechanical loading activates mitogen-activated protein kinase and S6 peptide kinase in cultured rat cardiac myocytes. J Biol Chem. 1993;268:12069–12076.

    PubMed  CAS  Google Scholar 

  23. Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1993;268:14553–14556.

    PubMed  CAS  Google Scholar 

  24. Chen RH, Abate C, Blenis J. Phosphorylation of the c-fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase. Proc Natl Acad Sci USA. 1993;90:10952–10956.

    Article  PubMed  CAS  Google Scholar 

  25. Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR. Phosphorylation of c-jun mediated by MAP kinases. Nature. 1991;353:670–674.

    Article  PubMed  CAS  Google Scholar 

  26. Hsieh HJ, Li NQ, Frangos JA. Pulsatile and steady flow induces c-fos expression in human endothelial cells. J Cell Physiol. 1993;154:143–151.

    Article  PubMed  CAS  Google Scholar 

  27. Gentz R, Rauscher FJ III, Abate C, Curran T. Parallel association of fos and jun leucine zippers juxtaposes DNA binding domains. Science. 1989;243:1695–1699.

    Article  PubMed  CAS  Google Scholar 

  28. Matsui H, Murata Y, Hirano K, et al. Hydrogen peroxide-induced cellular injury is associated with increase in endogenous fluorescence from rat gastric mucosal epithelial cell culture: a new method for detecting oxidative cellular injury by fluorescence measurement. J Gastroenterol. 1998;33:318–325.

    Google Scholar 

  29. Dionne S, D’Agata ID, Ruemmele FM, et al. Tyrosine kinase and MAPK inhibition of TNF-alpha- and EGF-stimulated IEC-6 cell growth. Biochem Biophys Res Commun. 1998;242:146–150.

    Article  PubMed  CAS  Google Scholar 

  30. Tseng H, Peterson TE, Berk BC. Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells. Circ Res. 1995;77:869–878.

    Article  PubMed  CAS  Google Scholar 

  31. Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC. An osmosensing signal transduction pathway in yeast. Science. 1993;259:1760–1763.

    Article  PubMed  CAS  Google Scholar 

  32. Pai R, Ohta M, Itani RM, Sarfeh IJ, Tarnawski AS. Induction of mitogen-activated protein kinase signal transduction pathway during gastric ulcer healing in rats. Gastroenterology. 1998;114:706–713.

    Article  PubMed  CAS  Google Scholar 

  33. Suzuki H, Masaoka T, Minegishi Y, Motosugi Y, Miura S, Ishii H. Lansoprazole promotes gastric mucosal cell proliferation and migration by activating p44/p42 mitogen-activated protein kinase. Wound Repair Regen. 2004;12:93–99.

    Article  PubMed  Google Scholar 

  34. Goke M, Kanai M, Lynch-Devaney K, Podolsky DK. Rapid mitogen-activated protein kinase activation by transforming growth factor alpha in wounded rat intestinal epithelial cells. Gastroenterology. 1998;114:697–705.

    Article  PubMed  CAS  Google Scholar 

  35. Hirokawa M, Miura S, Kishikawa H, et al. Loading of mechanical pressure activates mitogen-activated protein kinase and early immediate gene in intestinal epithelial cells. Dig Dis Sci. 2001;46:1993–2003.

    Article  PubMed  CAS  Google Scholar 

  36. Fraser KA, Davison JS. Meal-induced c-fos expression in brain stem is not dependent on cholecystokinin release. Am J Physiol. 1993;265:R235–R239.

    PubMed  CAS  Google Scholar 

  37. Raybould HE, Gayton RJ, Dockray GJ. Mechanisms of action of peripherally administered cholecystokinin octapeptide on brain stem neurons in the rat. J Neurosci. 1988;8:3018–3024.

    PubMed  CAS  Google Scholar 

  38. Angel P, Karin M. The role of jun, fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991;1072:129–157.

    PubMed  CAS  Google Scholar 

  39. Simmons JG, Hoyt EC, Westwick JK, Brenner DA, Pucilowska JB, Lund PK. Insulin-like growth factor-I and epidermal growth factor interact to regulate growth and gene expression in IEC-6 intestinal epithelial cells. Mol Endocrinol. 1995;9:1157–1165.

    Article  PubMed  CAS  Google Scholar 

  40. Lan Q, Mercurius KO, Davies PF. Stimulation of transcription factors NF kappa B and AP1 in endothelial cells subjected to shear stress. Biochem Biophys Res Commun. 1994;201:950–956.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science (no. 22300169, to HS), a Health and Labour Sciences Research Grant for Research on Health Technology Assessment (Clinical Research Promotion no. 47 to HS), a grant from the Smoking Research Foundation (to HS), the Keio Gijuku Academic Development Fund (to HS) and National Defense Medical College.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekazu Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamizo, H., Suzuki, H., Miura, S. et al. Transmural Pressure Loading Enhances Gastric Mucosal Cell Proliferation. Dig Dis Sci 57, 2545–2554 (2012). https://doi.org/10.1007/s10620-012-2208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2208-2

Keywords

Navigation