Skip to main content
Log in

The Effect of Spatial Dispersion on the Field Enhancement Factor of Magnetoplasmonic Nanoparticles

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

The discrete sources method is used in the framework of the generalized nonlocal optical response theory (GNOR) to construct a mathematical model of a layered magnetite-Au nanoparticle allowing for the spatial dispersion in the gold shell. We analyze the additional boundary conditions on the magnetite-Au interface that ensure unique solvability of the boundary-value diffraction problem. We investigate the effect of spatial dispersion on the field enhancement factor at the exterior boundary of the layered particle, allowing also for possible asymmetry in the position of the core relative to the shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Pelton and G. Bryant, Introduction to Metal-Nanoparticle Plasmonics, Wiley, New York (2013).

    Google Scholar 

  2. L. Peixoto, R. Magalhães, D. Navas, et al., “Magnetic nanostructures for emerging biomedical applications,” Appl. Phys. Rev., 7, 011310 (2020).

    Article  Google Scholar 

  3. P. K. Kalambate, Dhanjai, Z. Huang, Y. Li, et al., “Core@shell nanomaterial-based sensing devices, A review,” Trends Anal. Chem., 115, 147–161 (2019).

    Article  Google Scholar 

  4. Z. Fattahi, A. Y. Khosroushahi, and M. Hasanzadeh, “Recent progress on developing of plasmon biosensing of tumor biomarkers, Efficient method towards early stage recognition of cancer,” Biomedicine & Pharmacotherapy, 132, 1108500 (2020).

    Article  Google Scholar 

  5. X. Wang, H. Li, and G. Chen, “6-Core-shell nanoparticles for cancer imaging and therapy,” in: Core-Shell Nanostructures for Drug Delivery and Theranostics, 143–175 (2018).

  6. G. Brennan, S. Bergamino, M. Pescio, et al., “The effects of a varied gold shell thickness on iron oxide nanoparticle cores in magnetic manipulation, T1 and T2 MRI contrasting, and magnetic hyperthermia,” Nanomaterials, 10, 2424 (2020).

    Article  Google Scholar 

  7. S. Rajkumar and M. Prabaharan, “Multi-functional core-shell Fe3O4@Au nanoparticles for cancer diagnosis and therapy,” Colloids and Surfaces B, Biointerfaces, 174, 252–259 (2019).

    Article  Google Scholar 

  8. M. A. Dhey, A. A. Aziz, M. S. Jameel, et al., “Mechanisms of effective gold shell on Fe3O4 core nanoparticles formation using sonochemistry method,” Ultrasonics — Sonochemistry, 64, 104865 (2020).

    Article  Google Scholar 

  9. C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C, 115, 19470–19475 (2011).

    Article  Google Scholar 

  10. M. Barbry, P. Koval, F. Marchesin, R. Esteban, et al., “Atomistic near-field nanoplasmonics, reaching atomic-scale resolution in nanooptics,” Nano Lett., 15, 3410–3419 (2015).

    Article  Google Scholar 

  11. M. Kupresak, X. Zheng, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Appropriate nonlocal hydrodynamic models for the characterization of deep-nanometer scale plasmonic scatterers,” Adv. Theory Simul., 3, 1900172 (2019).

    Article  Google Scholar 

  12. C. Ciraci, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics, a macroscopic approach to a microscopic problem,” Chem. Phys. Chem., 14, 1109–1116 (2013).

    Article  Google Scholar 

  13. N. A. Mortensen, S. Raza, M. Wubs, et al., “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun., 5, 3809–3815 (2014).

    Article  Google Scholar 

  14. Yu. A. Eremin and A. G. Sveshnikov, “Quasi-classical models in quantum nanoplasmonics based on the discrete sources method,” Zh. Vychisl. Mat. i Matem. Fiz., 61, 34–62 (2021).

    Google Scholar 

  15. Yu. Eremin, A. Doicu, and T. Wriedt, “Discrete sources method for modeling the nonlocal optical response of a nonspherical particle dimer,” JQSRT, 217, 35–44 (2018).

    Article  Google Scholar 

  16. M. Wubs and A. Mortensen, “Nonlocal response in plasmonic nanostructures. Quantum plasmonics,” in: Quantum Plasmonics, S. Bozhevolnyi et al. (eds.), Springer, Switzerland (2017), pp. 279–302.

  17. J. R. Maack, N. A. Mortensen, and M. Wubs, “Size-dependent nonlocal effects in plasmonic semiconductor particles,” Europhys. Lett., 119, No. 1, 17003 (2017).

  18. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory [Russian translation], Mir, Moscow (1987).

  19. N. S. Bakhvalov, Numerical Methods [in Russian], Nauka, Moscow (1973).

  20. Y. Eremin, A. Doicu, and T. Wriedt, “Numerical method for analyzing the near-field enhancement of nonspherical dielectric-core metallic-shell particles accounting for the nonlocal dispersion,” J. Opt. Soc. Am. A, 37 (2020).

  21. Refractive Index Database, https://refractiveindex.info.

  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B, 6, 4370–4379 (1972).

    Article  Google Scholar 

  23. S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications, J. Biophotonics, 11, e201800141 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Eremin.

Additional information

Translated from Prikladnaya Matematika i Informatika, No. 69, 2022, pp. 36–45.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremin, Y.A., Lopushenko, V.V. The Effect of Spatial Dispersion on the Field Enhancement Factor of Magnetoplasmonic Nanoparticles. Comput Math Model 33, 32–40 (2022). https://doi.org/10.1007/s10598-022-09554-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-022-09554-1

Keywords

Navigation