Skip to main content
Log in

Virtual Element Method for Nonlinear Time-Dependent Convection-Diffusion-Reaction Equation

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

In this paper, we study the numerical solution of nonlinear time dependent convection-diffusion-reaction equation using virtual element method. We have used Virtual element discretization over polygonal meshes along with Streamline upwind Petrov–Galerkin stabilization (VEM-SUPG). The discrete terms are suitably modified to ensure the VEM computability with the help of projection operators \( {\Pi}_p^0 \) and \( {\Pi}_p^{\nabla } \) respectively. For the time discretization, we used backward Euler finite difference method and the resulting nonlinear system is solved using Newton’s method. We have conducted several numerical experiments validating the performance of VEM-SUPG method along with rate of convergence and behavior of solutions over convex and non-convex polygonal meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Beirao Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo, “Basic principles of virtual element methods,” Math. Models Methods Appl. Sci., 23, 199–214 (2013).

    Article  MathSciNet  Google Scholar 

  2. L. Beirao Da Veiga, F. Brezzi, L. D. Marini, and A. Russo, “Virtual element method for general second-order elliptic problems,” Math. Models Methods Appl. Sci., 26(4), 729–750 (2016).

    Article  MathSciNet  Google Scholar 

  3. G. Vacca and L. Beirao Da Veiga, “Virtual element methods for parabolic problems on polygonal meshes,” Numer. Methods Partial Differ. Equ., 31(6), 2110–2134 (2015).

    Article  MathSciNet  Google Scholar 

  4. G. Vacca, “Virtual Element Methods for hyperbolic problems on polygonal meshes,” Comput. Math. Appl., 74(5), 882–898 (2017).

    Article  MathSciNet  Google Scholar 

  5. Dibyendu Adak, E. Natarajan, and Sarvesh Kumar, “Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes,” Numer. Methods Partial Differ. Equ., 35(1), 222–245 (2019).

    Article  MathSciNet  Google Scholar 

  6. Dibyendu Adak, E. Natarajan, and Sarvesh Kumar, “Virtual element method for semilinear hyperbolic problems on polygonal meshes,” Int. J. Comput. Math., 96(5), 971–991 (2019).

    Article  MathSciNet  Google Scholar 

  7. Dibyendu Adak, S. Natarajan, and E. Natarajan, “Virtual element method for semilinear elliptic problems on polygonal meshes,” Appl. Numer. Math., 145, 175–187 (2019).

    Article  MathSciNet  Google Scholar 

  8. L. Beirao Da Veiga, C. Lovadina, and D. Mora, “A virtual Element Method for elastic and inelastic problems on polytope meshes,” Comput. Methods Appl. Mech. Eng., 295, 327–346 (2015).

    Article  MathSciNet  Google Scholar 

  9. L. Beirao Da Veiga, F. Brezzi, and L. D. Marini, “Virtual Elements for linear elasticity problems,” SIAM J. Numer. Anal., 51, 794–812 (2013).

    Article  MathSciNet  Google Scholar 

  10. P. F. Antonietti, L. Beirao Da Veiga, S. Scacchi, and M. Verani, “A C1 Virtual Element Method for the Cahn–Hilliard equation with polygonal meshes,” SIAM J. Numer. Anal., 54(1), 34–56 (2016).

    Article  MathSciNet  Google Scholar 

  11. P. F. Antonietti, L. Beirao Da Veiga, D. Mora, and M. Verani, “A stream Virtual Element formulation of the Stokes problem on polygonal meshes,” SIAM J. Numer. Anal., 52(1), 386–404 (2014).

    Article  MathSciNet  Google Scholar 

  12. I. Perugia, P. Pietra, and A. Russo, “A plane wave virtual element method for the Helmholtz problem,” ESAIM Math. Model. Numer. Anal., 50(3), 783–808 (2016).

    Article  MathSciNet  Google Scholar 

  13. Andrea Cangiani, Gianmarco Manzini, and Oliver J. Sutton, “Conforming and nonconforming virtual element methods for elliptic problems,” IMA J. Numer. Anal., 37(3), 1317–1354 (2017).

    MathSciNet  MATH  Google Scholar 

  14. Xin Liu and Zhangxin Chen, “The nonconforming virtual element method for the Navier–Stokes equations,” Adv. Comput. Math., 45(1), 51–74 (2019).

    Article  MathSciNet  Google Scholar 

  15. F. Brezzi, Richard S. Falk, and L. D. Marini, “Basic principles of mixed virtual element methods,” ESAIM Math. Model. Numer. Anal., 48, 1227–1240 (2014).

    Article  MathSciNet  Google Scholar 

  16. Ernesto Caceres, Gabriel N. Gatica, and Filander A. Sequeira, “A mixed virtual element method for the Brinkman problem,” Math. Models Methods Appl. Sci., 27(4), 707–743 (2017).

    Article  MathSciNet  Google Scholar 

  17. L. Beirao Da Veiga, F. Brezzi, F. Dassi, L. D. Marini, and A. Russo, “Serendipity virtual elements for general elliptic equations in three dimensions,” Chinese Annals of Mathematics, Series B, 39(2), 315–334 (2018).

    Article  MathSciNet  Google Scholar 

  18. L. Beirao, da Veiga, F. Brezzi, F. Dassi, L. D. Marini, and A. Russo, “Lowest order Virtual Element approximation of magnetostatic problems,” Comput. Methods Appl. Mech. Eng., 332, 343–362 (2018).

    Article  MathSciNet  Google Scholar 

  19. S. Ganesan and L. Tobiska, “Stabilization by local projection for convection-diffusion and incompressible flow problems,” J. Sci. Comput., 43(3), 326–342 (2010).

    Article  MathSciNet  Google Scholar 

  20. L. P. Franca and L. Tobiska, “Stability of the residual free bubble method for bilinear finite elements on rectangular grids,” IMA J. Numer. Anal., 22(1), 73–87 (2002).

    Article  MathSciNet  Google Scholar 

  21. E. Burman, “Consistent SUPG method for transient transport problems,” Comput. Methods Appl. Mech. Eng., 199(17–20), 1114– 1123 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arrutselvi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrutselvi, M., Natarajan, E. Virtual Element Method for Nonlinear Time-Dependent Convection-Diffusion-Reaction Equation. Comput Math Model 32, 376–386 (2021). https://doi.org/10.1007/s10598-021-09537-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-021-09537-8

Keywords

Navigation