Skip to main content

Advertisement

Log in

Data-driven discovery of governing equations for transient heat transfer analysis

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

With the development of automatic measurement and data storage, vast quantities of data can be recorded and analyzed for heat transfer processes, which provides an opportunity to discover the transient heat transfer governing laws from the data. In this study, a machine learning-based sequential threshold ridge regression (STRidge) approach is applied to extract partial differential equations (PDEs) and tested on the heat conduction equation and conductive–convective heat transfer equation subjected to different boundary conditions, data volumes, and noise levels. Moreover, we studied the learning of governing equation of nonlinear transient heat transfer and used the improved STRidge with genetic algorithm to learn PDE with incomplete candidate library. The results showcase highly accurate identification of governing equations for heat transfer. And our results reveal the vast potential of the data-driven method in complex geothermal problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Yang, X., Yao, K.: Uncertain partial differential equation with application to heat conduction. Fuzzy Optim. Decis. Making. 16, 379–403 (2016)

    Article  Google Scholar 

  2. Narasimhan, T.N.: Fourier's heat conduction equation: history, influence, and connections. Rev. Geophys. 37, 151–172 (1999)

    Article  Google Scholar 

  3. Raghavan, A., Wei, H., Palmer, T., Debroy, T.: Heat transfer and fluid flow in additive manufacturing. J. Laser Appl. 25, 052006 (2013)

    Article  Google Scholar 

  4. Mahdi, J.M., Lohrasbi, S., Nsofor, E.C.: Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: a review. Int. J. Heat Mass Transf. 137, 630–649 (2019)

    Article  Google Scholar 

  5. Bergles, A.: The implications and challenges of enhanced heat transfer for the chemical process industries. Chem. Eng. Res. Des. 79, 437–444 (2001)

    Article  Google Scholar 

  6. Xing, H.: Finite element simulation of transient geothermal flow in extremely heterogeneous fractured porous media. J. Geochem. Explor. 144, 168–178 (2014)

    Article  Google Scholar 

  7. Brandner, K., Saito, K., Seifert, U.: Thermodynamics of micro-and nano-systems driven by periodic temperature variations. Phys. Rev. X. 5, 031019 (2015)

    Google Scholar 

  8. Kim, S.-M., Mudawar, I.: Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow. Int. J. Heat Mass Transf. 56, 238–250 (2013)

    Article  Google Scholar 

  9. Volz, S., Shiomi, J., Nomura, M., Miyazaki, K.: Heat conduction in nanostructured materials. J. Therm. Sci. Technol. 11, JTST0001 (2016)

    Article  Google Scholar 

  10. Sun, Z., Zhang, X., Xu, Y., Yao, J., Wang, H., Lv, S., Sun, Z., Huang, Y., Cai, M., Huang, X.: Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model. Energy. 120, 20–33 (2017)

    Article  Google Scholar 

  11. Reinbold, P.A., Gurevich, D.R., Grigoriev, R.O.: Using noisy or incomplete data to discover models of spatiotemporal dynamics. Phys. Rev. E. 101, 010203 (2020)

    Article  Google Scholar 

  12. Li, X., Li, L., Yue, Z., Tang, X., Voss, H., Kurths, J., Yuan, Y.: Sparse learning of partial differential equations with structured dictionary matrix. Chaos. 29, 043130 (2019)

    Article  Google Scholar 

  13. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113, 3932–3937 (2016)

    Article  Google Scholar 

  14. Rudy, S.H., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Data-driven discovery of partial differential equations. Sci. Adv. 3, e1602614 (2017)

    Article  Google Scholar 

  15. Schaeffer, H.: Learning partial differential equations via data discovery and sparse optimization. Proc. R. Soc. A: Math. Phys. Eng. Sci. 473, (2017)

  16. Chang, H., Zhang, D.: Machine learning subsurface flow equations from data. Comput. Geosci. 23, 895–910 (2019)

    Article  Google Scholar 

  17. Champion, K., Lusch, B., Kutz, J.N., Brunton, S.L.: Data-driven discovery of coordinates and governing equations. Proc. Natl. Acad. Sci. 116, 22445–22451 (2019)

    Article  Google Scholar 

  18. Gurevich, D.R., Reinbold, P.A., Grigoriev, R.O.: Robust and optimal sparse regression for nonlinear PDE models. Chaos. 29, 103113 (2019)

    Article  Google Scholar 

  19. Raissi, M.: Deep hidden physics models: deep learning of nonlinear partial differential equations. J. Mach. Learn. Res. 19, 932–955 (2018)

    Google Scholar 

  20. Long Z., Lu Y., Ma X., Dong B.: Pde-net: learning pdes from data. In: International Conference on Machine Learning, PMLR, pp. 3208–3216 (2018)

  21. Xu H., Chang H., Zhang D.: Dl-pde: deep-learning based data-driven discovery of partial differential equations from discrete and noisy data, arXiv preprint arXiv:1908.04463 (2019)

  22. Srivastava, K., Ahlawat, M., Singh, J., Kumar, V.: Learning partial differential equations from noisy data using neural networks. J. Phys. Conf. Ser. 1655, (2020)

  23. Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125–141 (2018)

    Article  Google Scholar 

  24. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Machine learning of linear differential equations using Gaussian processes. J. Comput. Phys. 348, 683–693 (2017)

    Article  Google Scholar 

  25. Bongard, J., Lipson, H.: Automated reverse engineering of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 104, 9943–9948 (2007)

    Article  Google Scholar 

  26. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science. 324, 81–85 (2009)

    Article  Google Scholar 

  27. Vaddireddy, H., San, O.: Equation discovery using fast function extraction: a deterministic symbolic regression approach. Fluids. 4, (2019)

  28. Rudy, S., Alla, A., Brunton, S.L., Kutz, J.N.: Data-driven identification of parametric partial differential equations. SIAM J. Appl. Dyn. Syst. 18, 643–660 (2019)

    Article  Google Scholar 

  29. Vaddireddy, H., Rasheed, A., Staples, A.E., San, O.: Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data. Phys. Fluids. 32, 015113 (2020)

    Article  Google Scholar 

  30. Goharoodi, S.K., Phuc, P.N., Dupre, L., Crevecoeur G.: Data-driven discovery of the heat equation in an induction machine via sparse regression. In: 2019 IEEE International Conference on Industrial Technology (ICIT), pp. 90–95 (2019)

  31. Zhang, J., Ma, W.: Data-driven discovery of governing equations for fluid dynamics based on molecular simulation. J. Fluid Mech. 892, (2020)

  32. Xu, H., Chang, H., Zhang, D.: DLGA-PDE: discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm. J. Comput. Phys. 418, (2020)

  33. Pan, R., Zhang, W.: Compressible Navier-Stokes equations with temperature dependent heat conductivity. Commun. Math. Sci. 13, 401–425 (2015)

    Article  Google Scholar 

  34. Dogonchi, A., Ganji, D.: Convection–radiation heat transfer study of moving fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation. Appl. Therm. Eng. 103, 705–712 (2016)

    Article  Google Scholar 

  35. Al Ghossein, R.M., Hossain, M.S., Khodadadi, J.: Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage. Int. J. Heat Mass Transf. 107, 697–711 (2017)

    Article  Google Scholar 

  36. Glass, D.E., Özişik, M.N., McRae, D.S., Vick, B.: Hyperbolic heat conduction with temperature-dependent thermal conductivity. J. Appl. Phys. 59, 1861–1865 (1986)

    Article  Google Scholar 

  37. Maslyaev, M., Hvatov, A., Kalyuzhnaya, A.: Data-driven partial derivative equations discovery with evolutionary approach. In: International Conference on Computational Science, pp. 635–641. Springer (2019)

Download references

Acknowledgments

This research work is funded by the National Natural Science Foundation of China (No. 52074251 and No. 92058211), the Fundamental Research Funds for the Central Universities (No. 202012003), and 111 project (No. B20048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilin Xing.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, G., Xing, H., Zhang, R. et al. Data-driven discovery of governing equations for transient heat transfer analysis. Comput Geosci 26, 613–631 (2022). https://doi.org/10.1007/s10596-022-10145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-022-10145-7

Keywords

Navigation