Skip to main content

Advertisement

Log in

Assessing the contribution of aquaculture and restoration to wild oyster populations in a Rhode Island coastal lagoon

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The decline of the eastern oyster (Crassostrea virginica) has prompted various restoration and aquaculture efforts. Recent field surveys in Rhode Island suggest that wild populations are increasing, yet the factors contributing to expansion are unknown. We used a population genetic approach to characterize genetic differences between wild and cultured oyster populations and explore the extent of connectivity and admixture between groups. Individual oysters from four wild, three farmed, and two restored populations were collected within or just outside Ninigret Pond, a coastal lagoon highly influenced by human activity, and genotyped at 13 microsatellite loci. Results from the multi-locus genotype data showed that wild populations were more genetically diverse than the cultured populations. We also observed significant genetic differentiation between paired wild and cultured populations but not between pairs of wild populations. A cluster analysis detected substantial admixture between wild and cultured groups. As oyster aquaculture and restoration activities are forecasted to increase in the future, this study highlights the potential degree of genetic introgression between remnant wild populations and less diverse, hatchery-reared stocks. Those tasked with preserving our living natural resources should carefully consider how the juxtaposition of aquaculture, restored, and wild populations at small spatial scales will impact the genetic composition and evolutionary trajectories of species in decline for generations to come.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JD, Karel WJ, Mace CE, Bartram BL, Hare MP (2014) Spatial genetic features of eastern oyster (Cassostrea virginica Gmelin) in the Gulf of Mexico: northward movement of a secondary contact zone. Ecol Evol 4:1671–1683

    Article  PubMed  PubMed Central  Google Scholar 

  • Araki H, Schmid C (2010) Is hatchery stocking a help or harm? Aquaculture 308:S2–S11

    Article  Google Scholar 

  • Aranishi F, Okimoto T (2006) A simple and reliable method for DNA extraction from bivalve mantle. J Appl Genet 47:251–254

    Article  PubMed  Google Scholar 

  • Arnaud-Haond S, Vonau V, Bonhomme F et al (2004) Spatio-temporal variation in the genetic composition of wild populations of pearl oyster (Pinctada margaritifera cumingii) in French Polynesia following 10 years of juvenile translocation. Mol Ecol 13:2001–2007

    Article  CAS  PubMed  Google Scholar 

  • Beck MW, Brumbaugh RD, Airoldi L et al (2011) Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience 61:107–116

    Article  Google Scholar 

  • Buetel D (2014) Aquaculture in Rhode Island 2014 annual status report. http://www.crmc.ri.gov/aquaculture/aquareport14.pdf. Accessed 19 Dec 2017

  • Camara MD, Vadopalas B (2009) Genetic aspects of restoring olympia oysters and other native bivalves: balancing the need for action, good intentions, and the risks of making things worse. J Shellfish Res 28:121–145

    Article  Google Scholar 

  • Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623

    Article  CAS  PubMed  Google Scholar 

  • Carlsson J, Morrison CL, Reece KS (2006) Wild and aquaculture populations of the eastern oyster compared using microsatellites. J Hered 97:595–598

    Article  CAS  PubMed  Google Scholar 

  • Carlsson J, Carnegie RB, Cordes JF et al (2008) Evaluating recruitment contribution of a selectively bred aquaculture line of the oyster, Crassostrea virginica used in restoration efforts. J Shellfish Res 27:1117–1124

    Article  Google Scholar 

  • Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Coen LD, Humphries AT (2017) Oyster-generated marine habitats: their services, enhancement, restoration and monitoring. In: Allison SK, Murphy SD (eds) The Routledge handbook of ecological and environmental restoration. Routledge, New York, pp 274–294

    Chapter  Google Scholar 

  • Conover DO (1998) Local adaptation in marine fishes: evidence and implications for stock enhancement. Bull Mar Sci 62:477–493

    Google Scholar 

  • Cooper AM, Miller LM, Kapuscinski AR (2009) Conservation of population structure and genetic diversity under captive breeding of remnant coaster brook trout (Salvelinus fontinalis) populations. Conserv Genet 11:1087–1093

    Article  Google Scholar 

  • Do C, Waples RS, Peel D et al (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Duball CE (2017) Environmental impacts of oyster aquaculture on the coastal lagoons of southern Rhode Island. Master Thesis, University of Rhode Island

  • Earl DA, vonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Falk DA, Richards CM, Zedler JB (2006) Integrating restoration ecology and ecological theory: a synthesis. In: Falk DA, Palmer MA, Zedler JB (eds) Foundations of restoration ecology. Island Press, Washington, DC, pp 341–346

    Google Scholar 

  • Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, red List criteria and population viability analyses. Biol Conserv 170:56–63

    Article  Google Scholar 

  • Gaffney PM (2006) The role of genetics in shellfish restoration. Aquat Living Resour 19:277–282

    Article  Google Scholar 

  • Grabowski JH, Peterson CH (2007) Restoring oyster reefs to recover ecosystem services. In: Cuddington K, Byers JE, Wilson WG, Hastings A (eds) Theoretical ecology series. Academic Press, Burlington, pp 281–298

    Google Scholar 

  • Grant WS, Stewart Grant W, Jasper J et al (2017) Responsible genetic approach to stock restoration, sea ranching and stock enhancement of marine fishes and invertebrates. Rev Fish Biol Fish 27:615–649

    Article  Google Scholar 

  • Griffin M (2016) Fifteen years of Rhode Island oyster restoration: a performance evaluation and cost-benefit analysis. Master Thesis, University of Rhode Island

  • Gruenthal KM, Witting DA, Ford T et al (2013) Development and application of genomic tools to the restoration of green abalone in southern California. Conserv Genet 15:109–121

    Article  Google Scholar 

  • Guo X (2009) Use and exchange of genetic resources in molluscan aquaculture. Rev Aquac 1:251–259

    Article  Google Scholar 

  • Hanley TC, Hughes AR, Williams B et al (2016) Effects of intraspecific diversity on survivorship, growth, and recruitment of the eastern oyster across sites. Ecology 97:1518–1529

    Article  PubMed  Google Scholar 

  • Hare MP, Allen SK Jr, Bloomer P, Camara MD, Carnegie RB, Murfree J, Luckenbach M, Meritt D, Morrison C, Paynter K, Reece KS, Rose CG (2006) A genetic test for recruitment enhancement in Chesapeake Bay oysters, Crassostrea virginica, after population supplementation with a disease tolerant strain. Conserv Genet 7:717–734

    Article  Google Scholar 

  • Hare MP, Nunney L, Schwartz MK et al (2011) Understanding and estimating effective population size for practical application in marine species management. Conserv Biol 25:438–449

    Article  PubMed  Google Scholar 

  • He Y, Ford SE, Bushek D et al (2012) Effective population sizes of eastern oyster Crassostrea virginica (Gmelin) populations in Delaware Bay, USA. J Mar Res 70:357–379

    Article  Google Scholar 

  • Hedgecock D (1994) Does variance in reproductive success limit effective population sizes of marine organisms? In: Beaumont AR (ed) Genetics and evolution of aquatic organisms. Chapman and Hall, London, pp 122–134

    Google Scholar 

  • Hoffman JI, Amos W (2005) Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Mol Ecol 14:599–612

    Article  CAS  PubMed  Google Scholar 

  • Hughes AR, Stachowicz JJ (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc Natl Acad Sci USA 101:8998–9002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson JB, Kirby MX, Berger WH et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Jorde PE, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics 177:927–935

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenchington EL, Patwary MU, Zouros E, Bird CJ (2006) Genetic differentiation in relation to marine landscape in a broadcast-spawning bivalve mollusc (Placopecten magellanicus). Mol Ecol 15:1781–1796

    Article  CAS  PubMed  Google Scholar 

  • Kirby MX (2004) Fishing down the coast: historical expansion and collapse of oyster fisheries along continental margins. Proc Natl Acad Sci USA 101:13096–13099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitada S (2018) Economic, ecological, and genetic impacts of marine stock enhancement and sea ranching: a systematic review. Fish Fish 19:511–532

    Article  Google Scholar 

  • Kochmann J, Carlsson J, Crowe TP, Mariani S (2012) Genetic evidence for the uncoupling of local aquaculture activities and a population of an invasive species—a case study of pacific oysters (Crassostrea gigas). J Hered 103:661–671

    Article  PubMed  Google Scholar 

  • Levin LA (2006) Recent progress in understanding larval dispersal: new directions and digressions. Integr Comp Biol 46:282–297

    Article  CAS  PubMed  Google Scholar 

  • Lind CE, Evans BS, Knauer J et al (2009) Decreased genetic diversity and a reduced effective population size in cultured silver-lipped pearl oysters (Pinctada maxima). Aquaculture 286:12–19

    Article  Google Scholar 

  • Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25:1982–1983

    Article  CAS  PubMed  Google Scholar 

  • Milbury CA, Meritt DW, Newell RIE, Gaffney PM (2004) Mitochondrial DNA markers allow monitoring of oyster stock enhancement in the Chesapeake Bay. Mar Biol. https://doi.org/10.1007/s00227-004-1312-z

    Article  Google Scholar 

  • Naylor RL, Goldburg RJ, Primavera JH et al (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024

    Article  CAS  PubMed  Google Scholar 

  • Nixon SW, Buckley B, Granger S, Bintz J (2001) Responses of very shallow marine ecosystems to nutrient enrichment. Hum Ecol Assess 7:1457–1481

    Article  Google Scholar 

  • Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:146–158

    Article  Google Scholar 

  • Paquette SR (2011) PopGenKit: useful functions for (batch) file conversion and data resampling in microsatellite data sets. R package version 1.0. http://CRAN.R-project.org/package=PopGenKit. Accessed 22 Oct 2017

  • Peters JW, Eggleston DB, Puckett BJ, Theuerkauf SJ (2017) Oyster demographics in harvested reefs vs. no-take reserves: Implications for larval spillover and restoration success. Front Mar Sci. https://doi.org/10.3389/fmars.2017.00326

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Proestou DA, Vinyard BT, Corbett RJ et al (2016) Performance of selectively-bred lines of eastern oyster, Crassostrea virginica, across eastern US estuaries. Aquaculture 464:17–27

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Reece KS, Ribeiro WL, Gaffney PM et al (2004) Microsatellite marker development and analysis in the eastern oyster (Crassostrea virginica): confirmation of null alleles and non-Mendelian segregation ratios. J Hered 95:346–352

    Article  CAS  PubMed  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Rice MA, Valliere A, Caporelli A (2000) A review of shellfish restoration and management projects in Rhode Island. J Shellfish Res 19:401–408

    Google Scholar 

  • Rose CG, Paynter KT, Hare MP (2006) Isolation by distance in the eastern oyster, Crassostrea virginica, in Chesapeake Bay. J Hered 97:158–170

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Sanford E, Kelly MW (2011) Local adaptation in marine invertebrates. Annu Rev Mar Sci 3:509–535

    Article  Google Scholar 

  • Schindler DE, Hilborn R, Chasco B et al (2010) Population diversity and the portfolio effect in an exploited species. Nature 465:609–612

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution 39:53–65

    Article  PubMed  Google Scholar 

  • Smee DL, Overath RD, Johnson KD, Sanchez JA (2013) Intraspecific variation influences natural settlement of eastern oysters. Oecologia 173:947–953

    Article  PubMed  Google Scholar 

  • Spires JE (2015) The exchange of eastern oyster (Crassostrea virginica) larvae between subpopulations in the Choptank and Little Choptank rivers: model simulations, the influence of salinity, and implications for restoration. Master Thesis, University of Maryland

  • Thompson JA, Stow AJ, Raftos DA (2017) Lack of genetic introgression between wild and selectively bred Sydney rock oysters Saccostrea glomerata. Mar Ecol Prog Ser 570:127–139

    Article  Google Scholar 

  • Thorpe JP, Solé-Cava AM, Watts PC (2000) Exploited marine invertebrates: genetics and fisheries. In: Solé-Cava AM, Russo CAM, Thorpe JP (eds) Marine genetics. Springer, Dordrecht, pp 165–184

    Chapter  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Wang Y, Guo X (2007) Development and characterization of EST-SSR markers in the eastern oyster Crassostrea virginica. Mar Biotechnol 9:500–511

    Article  CAS  Google Scholar 

  • Wang Y, Wang X, Wang A, Guo X (2010) A 16-microsatellite multiplex assay for parentage assignment in the eastern oyster (Crassostrea virginica Gmelin). Aquaculture 308:S28–S33

    Article  CAS  Google Scholar 

  • Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121:379–391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184

    Article  Google Scholar 

  • Waples RS (2016) Tiny estimates of the Ne/N ration in marine fishes: are they real? J Fish Biol 89:2479–2504

    Article  CAS  PubMed  Google Scholar 

  • Waples RS (2018) Null alleles and FIS x FST correlations. J Hered 109:457–461

    Article  PubMed  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262

    Article  PubMed  Google Scholar 

  • Ward RD (2006) The importance of identifying spatial population structure in restocking and stock enhancement programmes. Fish Res 80:9–18

    Article  Google Scholar 

  • Weersing K, Toonen RJ (2009) Population genetics, larval dispersal, and connectivity in marine systems. Mar Ecol Prog Ser 393:1–12

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Zu Ermgassen PSE, Zu PS, Spalding MD et al (2012) Historical ecology with real numbers: past and present extent and biomass of an imperilled estuarine habitat. Proc R Soc B 279:3393–3400

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Marta Gómez-Chiarri for access to laboratory space and equipment, and Jessica Piez and Saebom Sohn for assistance in the lab. Dillon McNulty, Bray Beltran, and Jeanne Parente helped with oyster collections in the field. We also thank Mary Sullivan for help with GIS, Eric Schneider and Gary Casabona for useful discussions about shellfish restoration in RI, and two anonymous reviewers for very thoughtful and constructive comments on this manuscript. This work was funded through USDA ARS CRIS Project #803031000003, The Nature Conservancy’s GLOBE internship program, and a non-competitive grant from the USDA NRCS. Access to the University of Rhode Island Genomics and Sequencing Center, which is supported in part by the National Science Foundation under EPSCoR Cooperative Agreement # EPS-1004057, was also instrumental for the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina A. Proestou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaris, H., Brown, D.S. & Proestou, D.A. Assessing the contribution of aquaculture and restoration to wild oyster populations in a Rhode Island coastal lagoon. Conserv Genet 20, 503–516 (2019). https://doi.org/10.1007/s10592-019-01153-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-019-01153-9

Keywords

Navigation