Skip to main content

Advertisement

Log in

Development of 131I-ixolaris as a theranostic agent: metastatic melanoma preclinical studies

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Tissue factor (TF), a blood coagulation protein, plays an important role in tumor growth, invasion, and metastasis. Ixolaris, a tick-derived non-immunogenic molecule that binds to TF, has demonstrated in vivo inhibitory effect on murine models of melanoma, including primary growth and metastasis. This work aimed to: I) develop an efficient and stable labeling technique of ixolaris with Iodine-131(131I); II) compare the biodistribution of 131I and 131I-ixolaris in tumor-free and melanoma-bearing mice; III) evaluate whether 131I-ixolaris could serve as an antimetastatic agent. Ixolaris radioiodination was performed using iodogen, followed by liquid paper chromatography. Labeling stability and anticoagulant activity were measured. Imaging studies were performed after intravenous administration of free 131I or 131I-ixolaris in a murine melanoma model employing the B16-F10 cell line. Animals were divided in three experimental groups: the first experimental group, D0, received a single-dose of 9.25 MBq of 131I-ixolaris at the same day the animals were inoculated with melanoma cells. In the second group, D15, a single-dose of 9.25 MBq of 131I-ixolaris or free 131I was applied into mice on the fifteenth day after the tumor induction. The third group, D1-D15, received two therapeutic doses of 9.25 MBq of 131I-ixolaris or 131I. In vitro studies demonstrated that 131I-ixolaris is stable for up to 24 h and retains its inhibitory activity on blood coagulation. Biodistribution analysis and metastasis assays showed that all treatment regimens with 131I-ixolaris were effective, being the double-treatment (D1/D15) the most effective one. Remarkably, treatment with free 131I showed no anti-metastatic effect. 131I-ixolaris is a promising theranostic agent for metastatic melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett DC (2016) Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell Melanoma Res 29:122–140

    Article  CAS  PubMed  Google Scholar 

  2. Rastrelli M, Tropea S, Rossi CR, Alaibac M (2014) Melanoma : epidemiology, risk factors, pathogenesis. Diagn Classif In Vivo 28:1005–1012

    Google Scholar 

  3. Hategan CP, Mirela F, Kate P, C. (2014) Medical management of melanoma. Cancer Consult: Expert Clin Pract 111:149–162

    Google Scholar 

  4. Atkinson V (2017) Recent advances in malignant melanoma. Intern Med J 47:1114–1121

    Article  PubMed  Google Scholar 

  5. Schadendorf D, Fisher DE, Garbe C, Gershenwald JE, Grob JJ, Halpern A et al (2015) Melanoma. Nat Rev Dis Prim 1:15003

    Article  PubMed  Google Scholar 

  6. Testa U, Castelli G, Pelosi E (2017) Melanoma: genetic abnormalities, tumor progression, clonal evolution and tumor initiating cells. Med Sci 5:28–28

    Google Scholar 

  7. Ascierto PA, Flaherty K, Goff S. 2018. Emerging Strategies in Systemic Therapy for the Treatment of Melanoma.

  8. DePeralta DK, Boland GM (2015) Melanoma: advances in targeted therapy and molecular markers. Ann Surg Oncol 22:3451–3458

    Article  PubMed  Google Scholar 

  9. Durante M (2014) New challenges in high-energy particle radiobiology. Br J Radiol 87(1035):20130626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hussien H, Goud AA, Amin AM, El-Sheikh R, Seddik U (2011) Comparative study between chloramine-T and iodogen to prepare radioiodinated etodolac for inflammation imaging. J Radioanal Nucl Chem 288:9–15

    Article  CAS  Google Scholar 

  11. Kassis AI, Adelstein SJ (2005) Radiobiologic principles in radionuclide therapy. J Nucl Med 46(Suppl 1):4S–12S

    PubMed  Google Scholar 

  12. Ünak T, Akgün Z, Yildirim Y, Duman Y, Erenel G (2001) Self-radioiodination of iodogen. Appl Radiat Isot 54:749–752

    Article  PubMed  Google Scholar 

  13. Kasthuri RS, Taubman MB, Mackman N (2009) Role of tissue factor in cancer. J Clin Oncol 27(29):4834–4838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Graf C, Ruf W (2018) Tissue factor as a mediator of coagulation and signaling in cancer and chronic inflammation. Thromb Res 164(Suppl 1):S143–S147

    Article  CAS  PubMed  Google Scholar 

  15. Abe K, Shoji M, Chen J, Bierhaus A, Danave I, Micko C, Casper K, Dillehay DL, Nawroth PP, Rickles FR (1999) Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc Natl Acad Sci USA 96(15):8663–8668

    Article  CAS  PubMed  Google Scholar 

  16. Bromberg ME, Sundaram R, Homer RJ, Garen A, Konigsberg WH (1999) Role of tissue factor in metastasis: functions of the cytoplasmic and extracellular domains of the molecule. Thromb Haemost 82(1):88–92

    CAS  PubMed  Google Scholar 

  17. Lima LG, Oliveira AS, Campos LC, Bonamino M, Chammas R, Werneck C, Vicente CP, Barcinski MA, Petersen LC, Monteiro RQ (2011) Malignant transformation in melanocytes is associated with increased production of procoagulant microvesicles. Thromb Haemost 106(4):712–723

    Article  CAS  PubMed  Google Scholar 

  18. Lima LG, Monteiro RQ (2013) Activation of blood coagulation in cancer: implications for tumour progression. Biosci Rep 33(5):e00064

    Article  PubMed  PubMed Central  Google Scholar 

  19. D’Asti E, Rak J (2016) Biological basis of personalized anticoagulation in cancer: oncogene and oncomir networks as putative regulators of coagulopathy. Thromb Res 140:S37–S43

    Article  PubMed  Google Scholar 

  20. Tieken C, Versteeg HH (2016) Anticoagulants versus cancer. Thromb Res 140:S148–S153

    Article  CAS  PubMed  Google Scholar 

  21. Francischetti IMB (2002) Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis: identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. Blood 99:3602–3612

    Article  CAS  PubMed  Google Scholar 

  22. De Paula VS, Sgourakis NG, Francischetti IMB, Almeida FCL, Monteiro RQ, Valente AP (2019) NMR structure determination of Ixolaris and factor X(a) interaction reveals a noncanonical mechanism of Kunitz inhibition. Blood 134(8):699–708

    Article  PubMed  Google Scholar 

  23. Nazareth RA, Tomaz LS, Ortiz-Costa S, Atella GC, Ribeiro JM, Francischetti IM, Monteiro RQ (2006) Antithrombotic properties of Ixolaris, a potent inhibitor of the extrinsic pathway of the coagulation cascade. Thromb Haemost 96(1):7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carneiro-Lobo TC, Konig S, Machado DE, Nasciutti LE, Forni MF, Francischetti IM, Sogayar MC, Monteiro RQ. 2009. J Thromb Haemost, 7(11): 1855–64.

  25. de Oliveira ADS, Lima LG, Mariano-Oliveira A, Machado DE, Nasciutti LE (2012) Inhibition of tissue factor by ixolaris reduces primary tumor growth and experimental metastasis in a murine model of melanoma. Thromb Res 130:e163–e170

    Article  PubMed Central  Google Scholar 

  26. Barboza T, Gomes T, Mizurini DM, Monteiro RQ, Konig S, Francischetti IMB et al (2015) 99mTc-ixolaris targets glioblastoma-associated tissue factor: in vitro and pre-clinical applications. Thromb Res 136:432–439

    Article  CAS  PubMed  Google Scholar 

  27. Gaggioli C, Sahai E (2007) Melanoma invasion—current knowledge and future directions. Pigment Cell Res 20(3):161–172

    Article  CAS  PubMed  Google Scholar 

  28. Coricovac D, Dehelean C, Moaca EA, Pinzaru I, Bratu T, Navolan D, Boruga O (2018) Cutaneous melanoma-a long road from experimental models to clinical outcome: a review. Int J Mol Sci 19(6):E1566

    Article  PubMed  Google Scholar 

  29. Kirszberg C, Lima LG, de Oliveira Silva Da A, Pickering W, Gray E (2009) Simultaneous tissue factor expression and phosphatidylserine exposure account for the highly procoagulant pattern of melanoma cell lines. Melanoma Res 19(5):301–308

    Article  CAS  PubMed  Google Scholar 

  30. Fraker PJ, Speck JC (1978) Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril. Biochem Biophys Res Commun 80:849–857

    Article  CAS  PubMed  Google Scholar 

  31. Lima LG, Leal AC, Vargas G, Porto-Carreiro I, Monteiro RQ (2013) Intercellular transfer of tissue factor via the uptake of tumor-derived microvesicles. Thromb Res 132(4):450–456

    Article  CAS  PubMed  Google Scholar 

  32. Åberg M, Eriksson O, Siegbahn A (2015) Tissue factor noncoagulant signaling: mechanisms and implications for cell migration and apoptosis. Semin Thromb Hemost 41(7):691–699

    Article  PubMed  Google Scholar 

  33. Han X, Guo B, Li Y, Zhu B (2014) Tissue factor in tumor microenvironment: a systematic review. J Hematol Oncol 7:1–8

    Article  Google Scholar 

  34. Shi S, Hong H, Orbay H, Graves SA, Yang Y, Ohman JD, Liu B, Nickles RJ, Wong HC, Cai W (2015) ImmunoPET of tissue factor expression in triple-negative breast cancer with a radiolabeled antibody Fab fragment. Eur J Nucl Med Mol Imaging 42(8):1295–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nielsen CH, Jeppesen TE, Kristensen LK, Jensen MM, El Ali HH, Madsen J, Wiinberg B, Petersen LC, Kjaer A (2016) PET Imaging of tissue factor in pancreatic cancer using 64Cu-labeled active site-inhibited factor VII. J Nucl Med 57(7):1112–1119

    Article  CAS  PubMed  Google Scholar 

  36. Sugyo A, Aung W, Tsuji AB, Sudo H, Takashima H, Yasunaga M, Matsumura Y, Saga T, Higashi T (2019) Anti-tissue factor antibody-mediated immuno-SPECT imaging of tissue factor expression in mouse models of pancreatic cancer. Oncol Rep 41(4):2371–2378

    CAS  PubMed  Google Scholar 

  37. Carneiro-Lobo TC, Schaffner F, Disse J, Ostergaard H, Francischetti IM, Monteiro RQ, Ruf W (2012) The tick-derived inhibitor Ixolaris prevents tissue factor signaling on tumor cells. J Thromb Haemost 10(9):1849–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stewart JS, Hird V, Snook D, Sullivan M, Hooker G, Courtenay-Luck N, Sivolapenko G, Griffiths M, Myers MJ, Lambert HE et al (1989) Intraperitoneal radioimmunotherapy for ovarian cancer: pharmacokinetics, toxicity, and efficacy of I-131 labeled monoclonal antibodies. Int J Radiat Oncol Biol Phys 16(2):405–413

    Article  CAS  PubMed  Google Scholar 

  39. Ashrafi SA, Hosseinimehr SJ, Varmira K, Abedi SM (2012) Radioimmunotherapy with 131 I-Bevacizumab as a specific molecule for cells with overexpression of the vascular endothelial growth factor. Cancer Biother Radiopharm 27:420–425

    Article  CAS  PubMed  Google Scholar 

  40. Bhatia S, Tykodi SS, Thompson JA, 2009, Treatment of metastatic melanoma: an overview. Oncology (Williston Park, N.Y.).

  41. Jadvar H (2017) Targeted radionuclide therapy: an evolution toward precision cancer treatment. Am J Roentgenol 209:277–288

    Article  Google Scholar 

  42. Jonklaas J, 2007, Role of radioactive iodine for adjuvant therapy and treatment of metastases-Jonklaas2007p1589.pdf, 5: 631–640.

  43. Rose JN, Crook JM (2015) The role of radiation therapy in the treatment of metastatic castrate-resistant prostate cancer. Ther Adv Urol 7:135–145

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledegements

The Brazilian National Council for Scientific and Technological Development (CNPq), The State of Rio de Janeiro Research Foundation (FAPERJ), and the Coordination for the Improvement of Higher Education Personnel (CAPES) supported this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Augusto Lopes de Souza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barboza, T., Gomes, T., da Costa Medeiros, P. et al. Development of 131I-ixolaris as a theranostic agent: metastatic melanoma preclinical studies. Clin Exp Metastasis 37, 489–497 (2020). https://doi.org/10.1007/s10585-020-10036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-020-10036-0

Keywords

Navigation