Skip to main content

Advertisement

Log in

The current understanding of the molecular determinants of inflammatory breast cancer metastasis

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Inflammatory breast cancer is a highly aggressive and metastatic form of locally advanced breast cancer that carries a significantly worse prognosis than non-inflammatory breast cancers. Unfortunately, the molecular basis of this deadly form of breast cancer has been understudied. Over the past 10 years new studies have begun to reveal a unique molecular profile of IBC shedding light on its unique ability to rapidly invade and metastasize via the dermal lymphatic system of the skin overlying the breast. The goal of this review is to introduce IBC to the reader and provide a brief overview of what is known about the metastatic mechanisms of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IBC:

inflammatory breast cancer

LABC:

locally advanced breast cancer

ER:

estrogen receptor

PgR:

progesterone receptor

EGFR:

epidermal growth factor receptor

RhoC:

Ras homology C

cav:

caveolin

References

  1. Jaiyesimi IA, Buzdar AU, Hortobagyi G (1992) Inflammatory breast cancer: A review J Clin Oncol 10:1014–24

    PubMed  CAS  Google Scholar 

  2. Kleer CG,van Golen KL, Merajver SD (2000) Molecular biology of breast cancer. Metastasis inflammatory breast cancer: Clinical syndrome and molecular determinants Breast Cancer Res 2:423–29

    Article  PubMed  Google Scholar 

  3. Levine PH, Steinhorn SC, Ries LG, et al., (1985) Inflammatory breast cancer: The experience of the Surveillance, Epidemiology, and End Results (SEER) Program J Natl Cancer Inst 74:291–7

    PubMed  CAS  Google Scholar 

  4. Sherry MM, Johnson DH, Page DL, et al., (1985) Inflammatory carcinoma of the breast. Clinical review and summary of the Vanderbilt experience with multi-modality therapyAm J Med 79:355–64

    Article  PubMed  CAS  Google Scholar 

  5. Tabbane F,el May A, Hachiche M, et al., (1985) Breast cancer in women under 30 years of age Breast Cancer Res Treat 6:137–44

    Article  PubMed  CAS  Google Scholar 

  6. Nichini FM, Goldman L, Lapayowker MS, et al., (1972) Inflammatory carcinoma of the breast in a 12-year-old girl Arch Surg 105:505–8

    PubMed  CAS  Google Scholar 

  7. Cristofanilli M, Buzdar AU, Hortobagyi GN (2003) Update on the management of inflammatory breast cancer Oncologist 8:141–8

    Article  PubMed  Google Scholar 

  8. Chang S, Buzdar AU, Hursting SD (1998) Inflammatory breast cancer and body mass index J Clin Oncol 16:3731–5

    PubMed  CAS  Google Scholar 

  9. Chang S, Alderfer JR, Asmar L, et al., (2000) Inflammatory breast cancer survival: The role of obesity and menopausal status at diagnosis Breast Cancer Res Treat 64:157–63

    Article  PubMed  CAS  Google Scholar 

  10. Le MG, Arriagada R, Bahi J et al. “Are risk factors for breast cancer similar in women with inflammatory breast cancer and in those with non-inflammatory breast cancer?” Breast (2005)

  11. Chang S, Parker SL, Pham T, et al., (1998) Inflammatory breast carcinoma incidence and survival: The surveillance epidemiology, and end results program of the national cancer institute, 1975–1992 Cancer 82:2366–72

    Article  PubMed  CAS  Google Scholar 

  12. Lerebours F, Bieche I, Lidereau R (2005) Update on inflammatory breast cancer Breast Cancer Res 7:52–8

    Article  PubMed  CAS  Google Scholar 

  13. Merajver SD, Weber BL, Cody R, et al., (1997) Breast conservation and prolonged chemotherapy for locally advanced breast cancer: The University of Michigan experience J Clin Oncol 15:2873–81

    PubMed  CAS  Google Scholar 

  14. Gruber G, Ciriolo M, Altermatt HJ, et al., (2004) Prognosis of dermal lymphatic invasion with or without clinical signs of inflammatory breast cancer Int J Cancer 109:144–8

    Article  PubMed  CAS  Google Scholar 

  15. Jardines L, Haffty BG, Theriault RL. Locally advanced, locally recurrent and metastatic breast cancer. In Pazdur R, Coia LR, Hoskins WJ, Wagman LD (eds) Cancer Management. A Multidisciplinary Approach, 3rd edition. Melville, NY: PRR Inc. 1999; 73–88

  16. Osborne CK, McGuire WL (1979) The use of steroid hormone receptors in the treatment of human breast cancer: A review Bull Cancer 66:203–9

    PubMed  CAS  Google Scholar 

  17. Knight WA 3rd, Osborne CK, Yochmowitz M, et al., (1980) Steroid hormone receptors in the management of human breast cancer Ann Clin Res 12:202–7

    PubMed  Google Scholar 

  18. Paradiso A, Tomlinson S, Brandi ML, et al., (1989) Cell kinetics and hormonal receptor status in inflammatory breast cancer. Comparison with locally advanced diseaseCancer 109:1922–7

    Article  Google Scholar 

  19. Guerin M, Sheng Z, Andrieu N, et al., (1990) Strong association between c-myb and oestrogen receptor expression in human breast cancer Oncogene 5:131–5

    PubMed  CAS  Google Scholar 

  20. Faille A, De Cremoux P, Extra J, et al., (2005) P53 mutations and overexpression in locally advanced breast cancers Br J Cancer 69:145–50

    Google Scholar 

  21. Alpaugh ML, Tomlinson JS, Shao ZM, et al., (1999) A novel human xenograft model of inflammatory breast cancer Cancer Res 59:5079–84

    PubMed  CAS  Google Scholar 

  22. Kleer CG, van Golen KL, Braun T, et al., (2002) Persistent E-cadherin expression in inflammatory breast cancer Mod Pathol 14:458–64

    Article  Google Scholar 

  23. Tomlinson JS, Alpaugh ML, Barsky SH (2001) An intact overexpressed E-cadherin/alpha, beta-catenin axis characterizes the lymphovascular emboli of inflammatory breast carcinoma Cancer Res 61:5231–41

    PubMed  CAS  Google Scholar 

  24. Colpaert CG, Vermeulen PB, Benoy I, et al., (2003) Inflammatory breast cancer shows angiogenesis with high endothelial proliferation rate and strong E-cadherin expression Br J Cancer 88:718–25

    Article  PubMed  CAS  Google Scholar 

  25. Christofori G, Semb H (1999) The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene Trends Biochem Sci 24:73–6

    Article  PubMed  CAS  Google Scholar 

  26. Cavallaro U, Schaffhauser B, Christofori G (2002) Cadherins and the tumour progression: Is it all in a switch? Cancer Lett 176:123–8

    Article  PubMed  CAS  Google Scholar 

  27. Hazan RB, Qiao R, Keren R, et al., (2004) Cadherin switch in tumor progression Ann NY Acad Sci 1014:155–63

    Article  PubMed  CAS  Google Scholar 

  28. Nagi C, Guttman M, Jaffer S, et al., (2005) N-cadherin expression in breast cancer: Correlation with an aggressive histologic variant??? Invasive micropapillary carcinoma Breast Cancer Res Treat 94:225–35

    Article  PubMed  CAS  Google Scholar 

  29. van Golen KL, Davies S, Wu ZF, et al., (1999) A novel putative low-affinity insulin-like growth factor-binding protein LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype Clin Cancer Res 5:2511–9

    PubMed  Google Scholar 

  30. van Golen KL, Wu ZF, Qiao XT, et al., (2000) RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype Cancer Res 60:5832–8

    PubMed  Google Scholar 

  31. Kleer CG, Zhang Y, Pan Q, et al., (2002) WISP3 is a novel tumor suppressor gene of inflammatory breast cancer Oncogene 21:3172–80

    Article  PubMed  CAS  Google Scholar 

  32. Kleer CG, Zhang Y, Pan Q, et al., (2004) WISP3 and RhoC guanosine triphosphatase cooperate in the development of inflammatory breast cancer Breast Cancer Res Treat 6:110–5

    Google Scholar 

  33. Wu M, Wu ZF, Kumar-Sinha C, et al., (2004) RhoC induces differential expression of genes involved in invasion and metastasis in MCF10A breast cells Breast Cancer Res Treat 84:3–12

    Article  PubMed  CAS  Google Scholar 

  34. Van den Eynden GG, Van der Auwera I, Van LS, et al., (2004) Validation of a tissue microarray to study differential protein expression in inflammatory and non-inflammatory breast cancer Breast Cancer Res Treat 85:13–22

    Google Scholar 

  35. Van LS, Van der Auwera I, Van den Eynden GG, et al., (2005) Distinct molecular signature of inflammatory breast cancer by CDNA microarray analysis Breast Cancer Res Treat 93:237–46

    Google Scholar 

  36. Van den Eynden GG, Van Laere S, Van der Auwere I et al. Overexpression of caveolin-1 and -2 in cell lines and human samples of inflammatory breast cancer. Breast Cancer Res Treat 2005

  37. Fiucci G, Ravid D, Reich R, et al., (2002) Caveolin-1 inhibits anchorage-independent growth anoikis and invasiveness in MCF-7 human breast cancer cells Oncogene 21:2365–75

    Article  PubMed  CAS  Google Scholar 

  38. Hayashi K, Matsuda S, Machida K, et al., (2001) Invasion activating caveolin-1 mutation in human scirrhous breast cancers Cancer Res 61:2361–64

    PubMed  CAS  Google Scholar 

  39. Lee SW, Reimer CL, Oh P, et al., (1998) Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells Oncogene 16:1391–7

    Article  PubMed  CAS  Google Scholar 

  40. Zhang W, Razani B, Altschuler Y, et al., (2000) Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1J Biol Chem 275:20717–25

    Article  PubMed  CAS  Google Scholar 

  41. Sloan EK, Stanley KL, Anderson RL (2004) Caveolin-1 inhibits breast cancer growth and metastasis Oncogene 23:7893–7

    Article  PubMed  CAS  Google Scholar 

  42. Lin M, DiVito MM, Merajver S, et al., (2005) regulation of pancreatic cancer cell migration and invasion RhoC GTPase and caveolin-1 Mol Cancer 4:21–

    Article  PubMed  CAS  Google Scholar 

  43. Perou CM, Sorlie T, Eisen MB, et al., (2000) Molecular portraits of human breast tumours Nature 406:747–52

    Article  PubMed  CAS  Google Scholar 

  44. Sorlie T, Perou CM, Tibshirani R, et al., (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications Proc Natl Acad Sci USA 98:10869–74

    Article  PubMed  CAS  Google Scholar 

  45. Sorlie T, Tibshirani R, Parker J, et al., (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets Proc Natl Acad Sci USA 100:8418–23

    Article  PubMed  CAS  Google Scholar 

  46. Bertucci F, Finetti P, Rougemont J, et al., (2004) Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy Cancer Res 64:8558–65

    Article  PubMed  CAS  Google Scholar 

  47. Bertucci F, Finetti P, Rougemont J, et al., (2005) Gene expression profiling identifies molecular subtypes of inflammatory breast cancer Cancer Res 65:2170–8

    Article  PubMed  CAS  Google Scholar 

  48. Van Laere S, Van den Eynden GG, Van der Auwere I et al. Identification of cell-of-origin breast tumor cell subtypes in inflammatory breast cancer by gene expression profiling. Breast Cancer Res Treat epub ahead of print: 2005, 1–13

  49. Nielson T, Hsu F, Jensen K, et al., (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma Clin Cancer Res 10:5367–74

    Article  Google Scholar 

  50. Tsuda H, Morita D, Kimura M, et al., (2005) Correlation of KIT and EGFR overexpression with invasive ductal breast carcinoma of the solid-tubular subtype nuclear grade 3, and mesenchymal or myoepithelial differentiation Cancer Sci 96:48–53

    Article  PubMed  CAS  Google Scholar 

  51. Huber M, Beug H, Wirth T (2004) Epithelial to mesenchymal transition: NF-KappaB takes center stage Cell Cycle 3:1477–80

    PubMed  CAS  Google Scholar 

  52. Huber M, Azoitei N, Baumann B, et al., (2004) NF-KappaB is essential for epithelial to mesenchymal transition and metastasis in a model of breast cancer progression J Clin Invest. 114:569–81

    PubMed  CAS  Google Scholar 

  53. van Golen KL, Wu ZF, Qiao XT, et al., (2000) RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells Neoplasia 2:418–25

    Article  PubMed  CAS  Google Scholar 

  54. Pan Q, Bao LW, Merajver SD (2003) Tetrathiomolybdate inhibits angiogenesis and metastasis through suppression of the NF-kappaB signaling cascade Mol Cancer Res 1:701–6

    PubMed  CAS  Google Scholar 

  55. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression Curr Opin Cell Biol 17:548–58

    Article  PubMed  CAS  Google Scholar 

  56. Aggarwal BB (2004) Nuclear factor-KappaB: The enemy within Cancer Cell 6:203–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Cynthia van Golen for careful review and Ms. Robyn Blanzy-Hodges for help in preparing this manuscript. This review was completed as part of Ms. Radunsky’s undergraduate honors thesis. Our work is supported by the Department of Defense Breast Cancer Research Program, DAMD-17-03-1-0728 and by the University of Michigan Comprehensive Cancer Center support grant (5 P30 CA46592).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth L. van Golen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radunsky, G.S., van Golen, K.L. The current understanding of the molecular determinants of inflammatory breast cancer metastasis. Clin Exp Metastasis 22, 615–620 (2005). https://doi.org/10.1007/s10585-006-9000-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-006-9000-7

Keywords

Navigation