Skip to main content
Log in

Revised estimates of paleoclimate sensitivity over the past 800,000 years

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

This study evaluates paleoclimate sensitivity over the past 800,000 years from proxy-based reconstructions of changes in global temperature, ice sheets and sea level, vegetation, dust, and greenhouse gases. This analysis uses statistical methods that are not biased by the variable (heteroscedastic) uncertainty in the reconstructions, and applies a Monte Carlo-style probabilistic framework to quantify several sources of measurement and structural uncertainty. Not addressing the heteroscedastic uncertainty would result in regression results that underestimate paleoclimate sensitivity by over 30%, and not using a probabilistic framework could underestimate the credible interval by fivefold. A comparison of changes in global temperature (ΔT) and changes in radiative forcing from greenhouse gases, ice sheets, dust, and vegetation (ΔR[GHG,LI,AE,VG]) over the past 800 kyr finds that the two are closely coupled across glacial cycles with a correlation of 0.81 (0.6 to 0.9, 95% credible interval). The variation of ΔT with ΔR over the past 800 kyr is non-linear, with lower correlation and lower responsiveness at colder temperatures. The paleoclimate sensitivity parameter estimates (S[GHG,LI,AE,VG]) are 0.84 °C/W/m2 (0.20 to 1.9 °C/W/m2, 95% interval) for interglacial periods and intermediate glacial climates and 0.53 °C/W/m2 (0.08 to 1.5 °C/W/m2, 95% interval) for full glacial climates, 37% lower at the median. The estimates of S[GHG,LI,AE,VG] and the pattern of state dependence are similar across glacial cycles over the past 800 kyr. This analysis explicitly includes several sources of uncertainty and is still able to provide a strong upper bound for the paleoclimate sensitivity parameter for interglacial periods and intermediate glacial climates: over 1.5 °C/W/m2 is < 10% probability, 1.7 °C/W/m2 is < 5% probability, and over 1.9 °C/W/m2 is < 2.5% probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In the terminology of PALAEOSENS (2012): “GHG stands for the impact of changes in all non-water natural greenhouse gases (notably, CO2, CH4, and N2O)”; “LI represents the radiative impact of global land ice-volume changes”; “AE indicates the radiative impact of aerosol changes”; and “VG stands for the radiative impact of global vegetation cover changes.”

  2. Note that the regression for the warmer half of the last 800 kyr continues to have a linear model without an intercept, but per the specification of a segmented model, the piecewise regression model allows an intercept for the colder part of the last 800 kyr.

References

  • Abe-Ouchi A, Saito F, Kawamura K, Raymo ME, Okuno J, Takahashi K, Blatter H (2013) Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500:190–193

    Article  Google Scholar 

  • Abraham B, Ledolter J (2006) Introduction to regression modeling. Duxbury Press, Belmont

    Google Scholar 

  • Bates SL, Siddall M, Waelbroeck C (2014) Hydrographic variations in deep ocean temperature over the mid-Pleistocene transition. Quat Sci Rev 88:147–158

    Article  Google Scholar 

  • Bereiter B, Eggleston S, Schmitt J, Nehrbass-Ahles C, Stocker TF, Fischer H, Kipfstuhl S, Chappellaz J (2015) Revision of the EPICA Dome C CO2 record from 800 to 600kyr before present. Geophys Res Lett 42:542–549

    Article  Google Scholar 

  • Clark PU, Archer D, Pollard D, Blum JD, Rial JA, Brovkin V, Mix AC, Pisias NG, Roy M (2006) The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat Sci Rev 25:3150–3184

    Article  Google Scholar 

  • Cook JR, Stefanski LA (1994) Simulation-extrapolation estimation in parametric measurement error models. J Am Stat Assoc 89:1314–1328

    Article  Google Scholar 

  • Crucifix M (2006) Does the Last Glacial Maximum constrain climate sensitivity? Geophys Res Lett 33:L18701

    Article  Google Scholar 

  • Edwards TL, Crucifix M, Harrison SP (2007) Using the past to constrain the future: how the palaeorecord can improve estimates of global warming. Prog Phys Geogr 31:481–500

    Article  Google Scholar 

  • Elderfield H, Ferretti P, Greaves M, Crowhurst S, McCave I, Hodell D, Piotrowski A (2012) Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337:704–709

    Article  Google Scholar 

  • Fong Y, Huang Y, Gilbert PB, Permar SR (2017) chngpt: threshold regression model estimation and inference. BMC Bioinf 18:454

    Article  Google Scholar 

  • Friedrich T, Timmermann A, Tigchelaar M, Elison Timm O, Ganopolski A (2016) Nonlinear climate sensitivity and its implications for future greenhouse warming. Sci Adv 2:e1501923

    Article  Google Scholar 

  • Ganopolski A, Calov R (2011) The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles. Clim Past 7:1415–1425

    Article  Google Scholar 

  • Genthon C, Barnola JM, Raynaud D, Lorius C, Jouzel J, Barkov NI, Korotkevich YS, Kotlyakov VM (1987) Vostok ice core: climatic response to CO2 and orbital forcing changes over the last climatic cycle. Nature 329:414–418

    Article  Google Scholar 

  • Grant KM, Rohling EJ, Ramsey CB, Cheng H, Edwards RL, Florindo F, Heslop D, Marra F, Roberts AP, Tamisiea ME, Williams F (2014) Sea-level variability over five glacial cycles. Nat Commun 5

  • Haam E, Huybers P (2010) A test for the presence of covariance between time-uncertain series of data with application to the Dongge Cave speleothem and atmospheric radiocarbon records. Paleoceanography 25

  • Hansen J, Sato M, Kharecha P, Beerling D, Berner R, Masson-Delmotte V, Pagani M, Raymo M, Royer DL, Zachos JC (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci J 2:217–231

    Article  Google Scholar 

  • Hansen J, Sato M, Kharecha P, Russell G, Lea DW, Siddall M (2007) Climate change and trace gases. Philos Trans R Soc A Math Phys Eng Sci 365:1925–1954

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt GA, Russell G, Aleinov I, Bauer M, Bauer S, Bell N, Cairns B, Canuto V, Chandler M, Cheng Y, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Kelley M, Kiang N, Koch D, Lean J, Lerner J, Lo K, Menon S, Miller R, Minnis P, Novakov T, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Shindell D, Stone P, Sun S, Tausnev N, Thresher D, Wielicki B, Wong T, Yao M, Zhang S (2005) Efficacy of climate forcings. J Geophys Res 110:1–45

    Google Scholar 

  • Hansen J, Sato M, Russell G, Kharecha P (2013) Climate sensitivity, sea level and atmospheric carbon dioxide. Philos Trans R Soc London Ser A 371

  • Hargreaves JC, Abe-Ouchi A, Annan JD (2007) Linking glacial and future climates through an ensemble of GCM simulations. Clim Past 3:77–87

    Article  Google Scholar 

  • Hewitt CD, Mitchell JFB (1997) Radiative forcing and response of a GCM to ice age boundary conditions: cloud feedback and climate sensitivity. Clim Dyn 13:821–834

    Article  Google Scholar 

  • Huybers P (2006) Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313:508–511

    Article  Google Scholar 

  • Huybers P, Wunsch C (2004) A depth-derived Pleistocene age model: uncertainty estimates, sedimentation variability, and nonlinear climate change. Paleoceanography 19

  • Imbrie JZ, Imbrie-Moore A, Lisiecki LE (2011) A phase-space model for Pleistocene ice volume. Earth Planet Sci Lett 307:94–102

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

  • Knutti R, Rugenstein MAA (2015) Feedbacks, climate sensitivity and the limits of linear models. Philos Trans R Soc London Ser A 373:20150146

    Article  Google Scholar 

  • Knutti R, Rugenstein MAA, Hegerl GC (2017) Beyond equilibrium climate sensitivity. Nat Geosci 10:727

    Article  Google Scholar 

  • Köhler P, Bintanja R, Fischer H, Joos F, Knutti R, Lohmann G, Masson-Delmotte V (2010) What caused Earth’s temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quat Sci Rev 29:129–145

    Article  Google Scholar 

  • Köhler P, de Boer B, von der Heydt AS, Stap LB, van de Wal RSW (2015) On the state dependency of the equilibrium climate sensitivity during the last 5 million years. Clim Past 11:1801–1823

    Article  Google Scholar 

  • Köhler P, Knorr G, Stap LB, Ganopolski A, de Boer B, van de Wal RSW, Barker S, Rüpke LH (2018) The effect of obliquity-driven changes on paleoclimate sensitivity during the Late Pleistocene. Geophys Res Lett 45:6661–6671

    Article  Google Scholar 

  • Köhler P, Stap LB, von der Heydt AS, de Boer B, van de Wal RSW, Bloch-Johnson J (2017) A state-dependent quantification of climate sensitivity based on paleodata of the last 2.1 million years. Paleoceanography 32:1102–1114

    Article  Google Scholar 

  • Lambert F (2008) Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452:616–619

    Article  Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth

  • Lea DW (2004) The 100 000-yr cycle in tropical SST, greenhouse forcing, and climate sensitivity. J Clim 17:2170–2179

    Article  Google Scholar 

  • Lin L, Khider D, Lisiecki LE, Lawrence CE (2014) Probabilistic sequence alignment of stratigraphic records. Paleoceanography 29:976–989

    Article  Google Scholar 

  • Lorius C, Jouzel J, Raynaud D, Hansen J, Letreut H (1990) The ice-core record: climate sensitivity and future greenhouse warming. Nature 347:139–145

    Article  Google Scholar 

  • Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola JM, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–386

    Article  Google Scholar 

  • Martinez-Boti MA, Foster GL, Chalk TB, Rohling EJ, Sexton PF, Lunt DJ, Pancost RD, Badger MPS, Schmidt DN (2015) Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518:49–54

    Article  Google Scholar 

  • Martínez-Garcia A, Rosell-Melé A, Jaccard SL, Geibert W, Sigman DM, Haug GH (2011) Southern Ocean dust-climate coupling over the past four million years. Nature 476:312–315

    Article  Google Scholar 

  • McClymont EL, Sosdian SM, Rosell-Melé A, Rosenthal Y (2013) Pleistocene sea-surface temperature evolution: early cooling, delayed glacial intensification, and implications for the mid-Pleistocene climate transition. Earth-Sci Rev 123:173–193

    Article  Google Scholar 

  • Mix AC, Bard E, Schneider R (2001) Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat Sci Rev 20:627–657

    Article  Google Scholar 

  • Pagani M, Liu Z, LaRiviere J, Ravelo AC (2010) High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nat Geosci 3:27–30

    Article  Google Scholar 

  • PALAEOSENS (2012) Making sense of palaeoclimate sensitivity. Nature 491:683–691

    Article  Google Scholar 

  • Parrenin F, Masson-Delmotte V, Köhler P, Raynaud D, Paillard D, Schwander J, Barbante C, Landais A, Wegner A, Jouzel J (2013) Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339:1060–1063

    Article  Google Scholar 

  • Raymo ME (1997) The timing of major climate terminations. Paleoceanography 12:577–585

    Article  Google Scholar 

  • Roe GH, Baker MB (2007) Why is climate sensitivity so unpredictable? Science 318:629–632

    Article  Google Scholar 

  • Rohling EJ, Foster GL, Grant KM, Marino G, Roberts AP, Tamisiea ME, Williams F (2014) Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508:477–482

    Article  Google Scholar 

  • Rohling EJ, Medina-Elizalde M, Shepherd JG, Siddall M, Stanford JD (2012) Sea surface and high-latitude temperature sensitivity to radiative forcing of climate over several glacial cycles. J Clim 25:1635–1656

    Article  Google Scholar 

  • Royer DL, Pagani M, Beerling DJ (2012) Geobiological constraints on Earth system sensitivity to CO2 during the Cretaceous and Cenozoic. Geobiology 10:298–310

    Article  Google Scholar 

  • Schilt A, Baumgartner M, Blunier T, Schwander J, Spahni R, Fischer H, Stocker TF (2010) Glacial–interglacial and millennial-scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years. Quat Sci Rev 29:182–192

    Article  Google Scholar 

  • Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner B, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54

    Article  Google Scholar 

  • Sherwood SC, Bony S, Boucher O, Bretherton C, Forster PM, Gregory JM, Stevens B (2015) Adjustments in the forcing-feedback framework for understanding climate change. Bull Am Meteorol Soc 96:217–228

    Article  Google Scholar 

  • Snyder CW (2010) The value of paleoclimate research in our changing climate. Clim Chang 100:407–418

    Article  Google Scholar 

  • Snyder CW (2016a) Bayesian hierarchical regression analysis of variations in sea surface temperature change over the past million years. Paleoceanography 31:1283–1300

    Article  Google Scholar 

  • Snyder CW (2016b) Evolution of global temperature over the past two million years. Nature 538:226–228

    Article  Google Scholar 

  • Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight S, Martin A, Murphy JM, Piani C, Sexton D, Smith LA, Spicer RA, Thorpe AJ, Allen MR (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406

    Article  Google Scholar 

  • Stap LB, Köhler P, Lohmann G (2019) Including the efficacy of land ice changes in deriving climate sensitivity from paleodata. Earth Syst Dyn 10:333–345

    Article  Google Scholar 

  • Tziperman E, Gildor H (2003) On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry between glaciation and deglaciation times. Paleoceanography 18:1–8

    Article  Google Scholar 

  • Vial J, Dufresne J-L, Bony S (2013) On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim Dyn 41:3339–3362

    Article  Google Scholar 

  • von der Heydt AS, Dijkstra HA, van de Wal RSW, Caballero R, Crucifix M, Foster GL, Huber M, Köhler P, Rohling E, Valdes PJ, Ashwin P, Bathiany S, Berends T, van Bree LGJ, Ditlevsen P, Ghil M, Haywood AM, Katzav J, Lohmann G, Lohmann J, Lucarini V, Marzocchi A, Pälike H, Baroni IR, Simon D, Sluijs A, Stap LB, Tantet A, Viebahn J, Ziegler M (2016) Lessons on climate sensitivity from past climate changes. Current Climate Change Reports 2:148–158

    Article  Google Scholar 

  • von der Heydt AS, Köhler P, van de Wal RSW, Dijkstra HA (2014) On the state dependency of fast feedback processes in (paleo) climate sensitivity. Geophys Res Lett 41:6484–6492

    Article  Google Scholar 

  • Winckler G, Anderson RF, Fleisher MQ, McGee D, Mahowald N (2008) Covariant glacial-interglacial dust fluxes in the equatorial Pacific and Antarctica. Science 320:93–96

    Article  Google Scholar 

  • Yoshimori M, Hargreaves JC, Annan JD, Yokohata T, Abe-Ouchi A (2011) Dependency of feedbacks on forcing and climate state in physics parameter ensembles. J Clim 24:6440–6455

    Article  Google Scholar 

Download references

Acknowledgments

I thank S. Schneider, R. Dunbar, C. Tebaldi, and C. Warshaw for critical discussions and reading drafts of the manuscript.

Funding

This research was supported by a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn W. Snyder.

Ethics declarations

Disclaimer

This activity is not conducted in connection with the United States Government or the United States Environmental Protection Agency (US EPA). The author is not doing this work in any governmental capacity. The views expressed in this article are the author’s own and do not necessarily represent those of the USA or the US EPA.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 293 kb)

ESM 2

(XLSX 45728 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snyder, C.W. Revised estimates of paleoclimate sensitivity over the past 800,000 years. Climatic Change 156, 121–138 (2019). https://doi.org/10.1007/s10584-019-02536-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-019-02536-0

Navigation