Skip to main content

Advertisement

Log in

Global climate forcing from albedo change caused by large-scale deforestation and reforestation: quantification and attribution of geographic variation

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies widely across the globe due to a range of factors including forest type, snow cover, and insolation, but resulting geographic variation remains poorly described and has been largely based on model assessments. This study provides an observation-based approach to quantify local and global radiative forcings from large-scale deforestation and reforestation and further examines mechanisms that result in the spatial heterogeneity of radiative forcing. We incorporate a new spatially and temporally explicit land cover-specific albedo product derived from Moderate Resolution Imaging Spectroradiometer with a historical land use data set (Land Use Harmonization product). Spatial variation in radiative forcing was attributed to four mechanisms, including the change in snow-covered albedo, change in snow-free albedo, snow cover fraction, and incoming solar radiation. We find an albedo-only radiative forcing (RF) of −0.819 W m−2 if year 2000 forests were completely deforested and converted to croplands. Albedo RF from global reforestation of present-day croplands to recover year 1700 forests is estimated to be 0.161 W m−2. Snow-cover fraction is identified as the primary factor in determining the spatial variation of radiative forcing in winter, while the magnitude of the change in snow-free albedo is the primary factor determining variations in summertime RF. Findings reinforce the notion that, for conifers at the snowier high latitudes, albedo RF diminishes the warming from forest loss and the cooling from forest gain more so than for other forest types, latitudes, and climate settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bala G, Caldeira K, Wickett M, Phillips T, Lobell D, Delire C, Mirin A (2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci 104:6550–6555. doi:10.1073/pnas.0608998104

    Article  Google Scholar 

  • Barnes CA, Roy DP (2008) Radiative forcing over the conterminous United States due to contemporary land cover land use albedo change. Geophys Res Lett:35. doi:10.1029/2008GL033567

  • Barnes CA, Roy DP (2010) Radiative forcing over the conterminous United States due to contemporary land cover land use change and sensitivity to snow and interannual albedo variability. Journal of Geophysical Research: Biogeosciences:115. doi:10.1029/2010JG001428

  • Betts RA, Falloon PD, Goldewijk KK, Ramankutty N (2007) Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agric For Meteorol 142:216–233. doi:10.1016/j.agrformet.2006.08.021

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449. doi:10.1126/science.1155121

    Article  Google Scholar 

  • Brovkin V, Claussen M, Driesschaert E, Fichefet T, Kicklighter D, Loutre MF, Matthews HD, Ramankutty N, Schaeffer M, Sokolov A (2006) Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Clim Dyn 26:587–600. doi:10.1007/s00382-005-0092-6

    Article  Google Scholar 

  • Davin EL, de Noblet-Ducoudré N (2010) Climatic impact of global-scale deforestation: radiative versus nonradiative processes. J Clim 23:97–112. doi:10.1175/2009JCLI3102.1

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772

    Article  Google Scholar 

  • Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf C (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83:287–302. doi:10.1016/S0034-4257(02)00078-0

    Article  Google Scholar 

  • Gao F, He T, Wang Z, Ghimire B, Shuai Y, Masek J, Schaaf C, Williams C (2014) Multiscale climatological albedo look-up maps derived from moderate resolution imaging spectroradiometer BRDF/albedo products. J Appl Remote Sens 8:083532–083532. doi:10.1117/1.JRS.8.083532

    Article  Google Scholar 

  • Ghimire B, Williams CA, Masek J, Gao F, Wang Z, Schaaf C, He T (2014) Global albedo change and radiative cooling from anthropogenic land cover change, 1700 to 2005 based on MODIS, land use harmonization, radiative kernels, and reanalysis. Geophys Res Lett 41:9087–9096. doi:10.1002/2014GL061671

    Article  Google Scholar 

  • Hall DK, Riggs GA, Salomonson VV, DiGirolamo NE, Bayr KJ (2002) MODIS snow-cover products. Remote Sens Environ 83:181–194. doi:10.1016/S0034-4257(02)00095-0

    Article  Google Scholar 

  • Hurtt GC, Frolking S, Fearon MG, Moore B, Shevliakova E, Malyshev S, Pacala SW, Houghton RA (2006) The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Glob Chang Biol 12:1208–1229. doi:10.1111/j.1365-2486.2006.01150.x

    Article  Google Scholar 

  • Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Klein Goldewijk K, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011) Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Chang 109:117–161. doi:10.1007/s10584-011-0153-2

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Kistler R, Collins W, Saha S, White G, Woollen J, Kalnay E, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267. doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2

    Article  Google Scholar 

  • Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21:1303–1330

    Article  Google Scholar 

  • Myhre G, Kvalevåg MM, Schaaf CB (2005) Radiative forcing due to anthropogenic vegetation change based on MODIS surface albedo data. Geophys Res Lett:32. doi:10.1029/2005GL024004

  • Pongratz J, Reick CH, Raddatz T, Claussen M (2010) Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys Res Lett 37. doi:10.1029/2010GL043010

  • Schaaf CB, Gao F, Strahler AH, Lucht W, Li X, Tsang T, Strugnell NC, Zhang X, Jin Y, Muller J-P, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, Doll C, d’Entremont RP, Hu B, Liang S, Privette JL, Roy D (2002) First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Environ 83:135–148. doi:10.1016/S0034-4257(02)00091-3

    Article  Google Scholar 

  • Schaaf C, Liu J, Gao F, Strahler AH (2011) MODIS albedo and reflectance anisotropy products from Aqua and Terra. Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS, Remote Sensing and Digital Image Processing Series 11:873

  • Shell KM, Kiehl JT, Shields CA (2008) Using the radiative kernel technique to calculate climate feedbacks in NCAR’s community atmospheric model. J Clim 21:2269–2282. doi:10.1175/2007JCLI2044.1

    Article  Google Scholar 

  • Turner BL, Lambin EF, Reenberg A (2007) The emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci 104:20666–20671. doi:10.1073/pnas.0704119104

    Article  Google Scholar 

  • Wang Z, Schaaf CB, Strahler AH, Chopping MJ, Román MO, Shuai Y, Woodcock CE, Hollinger DY, Fitzjarrald DR (2014) Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sens Environ 140:60–77. doi:10.1016/j.rse.2013.08.025

    Article  Google Scholar 

  • Zhang H, Henderson-Sellers A, McGuffie K (1996) Impacts of tropical deforestation. Part I: process analysis of local climatic change. J Clim 9:1497–1517. doi:10.1175/1520-0442(1996)009<1497:IOTDPI>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a grant from the NASA ROSES09 Science of Terra and Aqua Program through award NNX11AG53G as well as partially through NASA grant NNX14AI73G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Williams.

Electronic supplementary material

Table 1

(DOCX 13 kb).

Table 2

(DOCX 13 kb).

Table 3

(DOCX 14 kb).

Table 4

(DOCX 14 kb).

Fig. 1

(DOCX 491 kb).

Fig. 2

(DOCX 962 kb).

Fig. 3

(DOCX 976 kb).

Fig. 4

(DOCX 514 kb).

Fig. 5

(DOCX 419 kb).

Fig. 6

(DOCX 841 kb).

Fig. 7

(DOCX 1900 kb).

Fig. 8

(DOCX 81 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, T., Williams, C.A., Ghimire, B. et al. Global climate forcing from albedo change caused by large-scale deforestation and reforestation: quantification and attribution of geographic variation. Climatic Change 142, 463–476 (2017). https://doi.org/10.1007/s10584-017-1962-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-017-1962-8

Keywords

Navigation