Skip to main content
Log in

Active Endocytosis and Microtubule Remodeling Restore Compressed Pyramidal Neuron Morphology in Rat Cerebral Cortex

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Previous studies have shown that compression alone reduced the thickness of rat cerebral cortex and apical dendritic lengths of pyramidal neurons without apparent cell death. Besides, decompression restored dendritic lengths at different degrees depending on duration of compression. To understand the mechanisms regulating dendritic shortening and lengthening upon compression and decompression, we applied transmission electron microscopy to examine microtubule and membrane structure of pyramidal neurons in rat sensorimotor cortex subjected to compression and decompression. Microtubule densities within apical dendritic trunks decreased significantly and arranged irregularly following compression for a period from 30 min to 24 h. In addition, apical dendritic trunks showed twisted contour. Two reasons are accounted for the decrease of microtubule density within this period. First, microtubule depolymerized and resulted in lower number of microtubules. Second, the twisted membrane widened the diameters of apical dendritic trunks, which also caused a decrease in microtubule density. Interestingly, these compression-induced changes were quickly reversed to control level following decompression, suggesting that these changes were accomplished passively. Furthermore, microtubule densities were restored to control level and the number of endocytotic vesicles significantly increased along the apical dendritic membrane in neurons subjected to 36 h or longer period of compression. However, decompression did not make significant changes on dendrites compressed for 36 h, for they had already shown straight appearance before decompression. These results suggest that active membrane endocytosis and microtubule remodeling occur in this adaptive stage to make the apical dendritic trunks regain their smooth contour and regular microtubule arrangement, similar to that of the normal control neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alfonso J, Fernández ME, Cooper B, Flugge G, Frasch AC (2005) The stress-regulated protein M6a is a key modulator for neurite outgrowth and filopodium/spine formation. Proc Natl Acad Sci USA 102:17196–17201

    Article  PubMed  CAS  Google Scholar 

  • Bianchi M, Hagan JJ, Heidbreder CA (2005) Neuronal plasticity, stress and depression: involvement of the cytoskeletal microtubular system? Curr Drug Targets CNS Neurol Disord 4:597–611

    Article  PubMed  CAS  Google Scholar 

  • Carlsson G, Hufnagel M, Jansen O, Claviez A, Nabavi A (2010) Rapid recovery of motor and cognitive functions after resection of a right frontal lobe meningioma in a child. Childs Nerv Syst 26:105–111

    Article  PubMed  Google Scholar 

  • Chen JR, Wang YJ, Tseng GF (2003) The effect of epidural compression on cerebral cortex: a rat model. J Neurotrauma 20:767–780

    Article  PubMed  Google Scholar 

  • Chen JR, Wang YJ, Tseng GF (2004) The effects of decompression and exogenous NGF on compressed cerebral cortex. J Neurotrauma 21:1640–1651

    Article  PubMed  Google Scholar 

  • Chen JR, Wang TJ, Wang YJ, Tseng GF (2010a) The immediate large-scale dendritic plasticity of cortical pyramidal neurons subjected to acute epidural compression. Neuroscience 167:414–427

    Article  PubMed  CAS  Google Scholar 

  • Chen LJ, Wang YJ, Tseng GF (2010b) Compression alters kinase and phosphatase activity and tau and MAP2 phosphorylation transiently while inducing the fast adaptive dendritic remodeling of underlying cortical neurons. J Neurotrauma 27:1657–1669

    Article  PubMed  Google Scholar 

  • Dickstein DL, Kabaso D, Rocher AB, Luebke JI, Wearne SL, Hof PR (2007) Changes in the structural complexity of the aged brain. Aging Cell 6:275–284

    Article  PubMed  CAS  Google Scholar 

  • Ertürk A, Hellal F, Enes J, Bradke F (2007) Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J Neurosci 27:9169–9180

    Article  PubMed  Google Scholar 

  • Ferrer I, Guionnet N, Cruz-Sanchez F, Tunon T (1990) Neuronal alterations in patients with dementia: a Golgi study on biopsy samples. Neurosci Lett 114:11–16

    Article  PubMed  CAS  Google Scholar 

  • Fontaine-Lenoir V, Chambraud B, Fellous A, David S, Duchossoy Y, Baulieu EE, Robel P (2006) Microtubule-associated protein 2 (MAP2) is a neurosteroid receptor. Proc Natl Acad Sci USA 103:4711–4716

    Article  PubMed  CAS  Google Scholar 

  • Fujimura M, Kaneta T, Shimizu H, Tominaga T (2009) Cerebral ischemia owing to compression of the brain by swollen temporal muscle used for encephalo-myo-synangiosis in moyamoya disease. Neurosurg Rev 32:245–249

    Article  PubMed  Google Scholar 

  • Furutani R, Kibayashi K (2011) Morphological alteration and reduction of MAP2-immunoreactivity in pyramidal neurons of cerebral cortex in a rat model of focal cortical compression. J Neurotrauma. doi:10.1089/neu.2010.1630

    PubMed  Google Scholar 

  • He Y, Yu W, Baas PW (2002) Microtubule reconfiguration during axonal retraction induced by nitric oxide. J Neurosci 22:5982–5991

    PubMed  CAS  Google Scholar 

  • Heuser J (1980) Three-dimensional visualization of coated vesicle formation in fibroblasts. J Cell Biol 84:560–583

    Article  PubMed  CAS  Google Scholar 

  • Hsieh ST, Kidd GJ, Crawford TO, Xu Z, Lin WM, Trapp BD, Cleveland DW, Griffin JW (1994) Regional modulation of neurofilament organization by myelination in normal axons. J Neurosci 14:6392–6401

    PubMed  CAS  Google Scholar 

  • Kennedy MJ, Ehlers MD (2006) Organelles and trafficking machinery for postsynaptic plasticity. Annu Rev Neurosci 29:325–362

    Article  PubMed  CAS  Google Scholar 

  • Lippman J, Dunaevsky A (2005) Dendritic spine morphogenesis and plasticity. J Neurobiol 64:47–57

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Liao M, Mielke JG, Ning K, Chen Y, Li L, El-Hayek YH, Gomez E, Zukin RS, Fehlings MG, Wan Q (2006) Ischemic insults direct glutamate receptor subunit 2-lacking AMPA receptors to synaptic sites. J Neurosci 26:5309–5319

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM (1999) Neuroplasticity failure in Alzheimer’s disease: bridging the gap between plaques and tangles. Neuron 24:521–529

    Article  PubMed  CAS  Google Scholar 

  • Mitsuyama F, Futatsugi Y, Okuya M, Karagiozov K, Peev N, Kato Y, Kanno T, Sano H, Koide T (2009) Amyloid beta: a putative intra-spinal microtubule-depolymerizer to induce synapse-loss or dentritic spine shortening in Alzheimer’s disease. Ital J Anat Embryol 114:109–120

    PubMed  Google Scholar 

  • Rácz B, Blanpied TA, Ehlers MD, Weinberg RJ (2004) Lateral organization of endocytic machinery in dendritic spines. Nat Neurosci 7:917–918

    Article  PubMed  Google Scholar 

  • Reifenberger G, Boström J, Bettag M, Bock WJ, Wechsler W, Kepes JJ (1996) Primary glioblastoma multiforme of the oculomotor nerve. Case report. J Neurosurg 84:1062–1066

    Article  PubMed  CAS  Google Scholar 

  • Shiozaki M, Yoshimura K, Shibata M, Koike M, Matsuura N, Uchiyama Y, Gotow T (2008) Morphological and biochemical signs of age-related neurodegenerative changes in klotho mutant mice. Neuroscience 152:924–941

    Article  PubMed  CAS  Google Scholar 

  • Silvani A, Gaviani P, Lamperti E, Botturi A, Ferrari D, Simonetti G, Salmaggi A (2011) Malignant gliomas: early diagnosis and clinical aspects. Neurol Sci 32(Suppl 2):S207–S208

    Article  PubMed  Google Scholar 

  • Tang BL (2008) Emerging aspects of membrane traffic in neuronal dendrite growth. Biochim Biophys Acta 1783:169–176

    Article  PubMed  CAS  Google Scholar 

  • Tseng BS, Marsh DR, Hamilton MT, Booth FW (1995) Strength and aerobic training attenuate muscle wasting and improve resistance to the development of disability with aging. J Gerontol A Biol Sci Med Sci 50:113–119

    PubMed  Google Scholar 

  • van der Sluijs P, Hoogenraad CC (2011) New insights in endosomal dynamics and AMPA receptor trafficking. Semin Cell Dev Biol 22:499–505

    Article  PubMed  Google Scholar 

  • Wang YJ, Chen JR, Tseng GF (2002) Fate of the soma and dendrites of cord-projection central neurons after proximal and distal spinal axotomy: an intracellular dye injection study. J Neurotrauma 19:1487–1502

    Article  PubMed  Google Scholar 

  • Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 24:1071–1089

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of Electron Microscopy Laboratory, Tzu Chi University for technical support. This study was funded by the grant TCIRP 95003-02 from Tzu Chi University, Taiwan.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Chen Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, SH., Wang, YJ., Tseng, GF. et al. Active Endocytosis and Microtubule Remodeling Restore Compressed Pyramidal Neuron Morphology in Rat Cerebral Cortex. Cell Mol Neurobiol 32, 1079–1087 (2012). https://doi.org/10.1007/s10571-012-9831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9831-5

Keywords

Navigation