Skip to main content
Log in

Impaired Mitochondrial Functions in Organophosphate Induced Delayed Neuropathy in Rats

  • Original paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Acute exposure to organophosphates induces a delayed neurodegenerative condition known as organophosphate-induced delayed neuropathy (OPIDN). The mechanism of OPIDN has not been fully understood as it does not involve cholinergic crisis. The present study has been designed to evaluate the role of mitochondrial dysfunctions in the development of OPIDN. OPIDN was induced in rats by administering acute dose of monocrotophos (MCP, 20 mg/kg body weight, orally) or dichlorvos (DDVP, 200 mg/kg body weight, subcutaneously), 15–20 min after treatment with antidotes [atropine (20 mg/kg body weight) and 2-PAM (100 mg/kg body weight) intraperitoneally]. MDA levels were observed to be higher and thiol content was lower in mitochondria from brain regions of OP exposed animals. This was accompanied by decreased activities of the mitochondrial enzymes; NADH dehydrogenase, succinate dehydrogenase, and cytochrome oxidase. In addition, mitochondrial functions assessed by MTT reduction also confirmed mitochondrial dysfunctions following development of OPIDN. The spatial long-term memory evaluated using elevated plus-maze test was observed to be deficit in OPIDN. The results suggest impaired mitochondrial functions as a mechanism involved in the development of organophosphate induced delayed neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DDVP:

2,2-Dichlorovinyl dimethyl phosphate

LMW-SH:

Low molecular weight thiols

MCP:

Monocrotophos

OPIDN:

Organophosphate induced delayed neuropathy

2-PAM:

2-Pralidoxime

P-SH:

Protein thiols

TSH:

Total thiols

References

  • Abou-Donia MB (1981) Organophosphorus ester-induced delayed neurotoxicity. Annu Rev Pharmacol Toxicol 21:511–548. doi:10.1146/annurev.pa.21.040181.002455

    Article  CAS  PubMed  Google Scholar 

  • Abou-Donia MB (1995) Involvement of cytoskeletal proteins in the mechanisms of organophosphorus ester-induced delayed neurotoxicity. Clin Exp Pharmacol Physiol 22:358–359. doi:10.1111/j.1440-1681.1995.tb02015.x

    Article  CAS  PubMed  Google Scholar 

  • Abou-Donia MB, Lapadula DM (1990) Mechanisms of organophosphorus ester-induced delayed neurotoxicity: type I and type II. Annu Rev Pharmacol Toxicol 30:405–440

    CAS  PubMed  Google Scholar 

  • Adams JD, Klaidman LK, Leung AC (1993) MPP1 and MPDP1 induced oxygen radical formation with mitochondrial enzymes. Free Radic Biol Med 15:181–186. doi:10.1016/0891-5849(93)90057-2

    Article  CAS  PubMed  Google Scholar 

  • Ali SF, David SN, Newport GD, Cadet JL, Slikker W (1994) MPTP induced oxidative stress and neurotoxicity are age-dependent: evidence from measures of reactive oxygen species and striatal dopamine levels. Synapse 18:27–34. doi:10.1002/syn.890180105

    Article  CAS  PubMed  Google Scholar 

  • Banu BS, Danadevi K, Rahman MF, Ahuja YR, Kaiser J (2001) Genotoxic effect of monocrotophos to sentinel species using comet assay. Food Chem Toxicol 39:361–366. doi:10.1016/S0278-6915(00)00141-1

    Article  Google Scholar 

  • Bustamante J, Di Libero E, Fernandez-Cobo M, Monti N, Cadenas E, Boveris A (2004) Kinetic analysis of thapsigargin-induced thymocyte apoptosis. Free Radic Biol Med 37:1490–1498. doi:10.1016/j.freeradbiomed.2004.06.038

    Article  CAS  PubMed  Google Scholar 

  • Carlson K, Ehrich M (2004) Organophosphorus compound-induced delayed neurotoxicity in white Leghorn hens assessed by Fluoro-Jade. Int J Toxicol 23:259–266. doi:10.1080/10915810490504968

    Article  CAS  PubMed  Google Scholar 

  • Cassarino DS, Bennett JP (1999) An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res Brain Res Rev 29:1–25. doi:10.1016/S0165-0173(98)00046-0

    Article  CAS  PubMed  Google Scholar 

  • Chan JY, Chan SH, Dai KY, Cheng HL, Chou JL, Chang AY (2006) Cholinergic-receptor-independent dysfunction of mitochondrial respiratory chain enzymes, reduced mitochondrial transmembrane potential and ATP depletion underlie necrotic cell death induced by the organophosphate poison mevinphos. Neuropharmacol 51:1109–1119. doi:10.1016/j.neuropharm.2006.06.024

    Article  CAS  Google Scholar 

  • Chaturvedi RK, Beal MF (2008) Mitochondrial approaches for neuroprotection. Ann N Y Acad Sci 1147:395–412

    CAS  PubMed  Google Scholar 

  • Choudhary S, Raheja G, Gupta V, Gill KD (2002) Possible involvement of dopaminergic neurotransmitter system in dichlorvos induced delayed neurotoxicity. J Biochem Mol Biol Biophys 6:29–36. doi:10.1080/10258140290010197

    Article  CAS  PubMed  Google Scholar 

  • Damodaran TV, Abdel-Rahman AA, Abou-Donia MB (2000) Early differential induction of C-jun in the central nervous system of hens treated with diisopropylphosphorofluoridate (DFP). Neurochem Res 25:1579–1586. doi:10.1023/A:1026614402886

    Article  CAS  PubMed  Google Scholar 

  • Damodaran TV, Abdel-Rahman AA, Suliman HB, Abou-Donia MB (2002) Early differential elevation and persistence of phosphorylated cAMP-response element binding protein (p-CREB) in the central nervous system of hens treated with diisopropyl phosphorofluoridate, an OPIDN-causing compound. Neurochem Res 27:183–193. doi:10.1023/A:1014824318991

    Article  CAS  PubMed  Google Scholar 

  • Du F, Zhu X, Zhang Y, Friedman M, Zhang N, Ugurbil K, Chen W (2008) Tightly coupled brain activity and cerebral ATP metabolic rate. Proc Natl Acad Sci USA 105:6409–6414. doi:10.1073/pnas.0710766105

    Article  CAS  PubMed  Google Scholar 

  • Eddleston M, Buckley NA, Eyer P, Dawson AH (2008) Medical management of acute organophosphorus pesticide self-poisoning. Lancet 37:597–607. doi:10.1016/S0140-6736(07)61202-1

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. doi:10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

  • Farage-Elawar M (1989) Enzyme and behavioral changes in young chicks as a result of carbaryl treatment. J Toxicol Environ Health 26:119–131

    Article  CAS  PubMed  Google Scholar 

  • Forsmark-Andree P, Dallner G, Ernster L (1995) Endogenous ubiquinol prevents protein modification accompanying lipid peroxidation in beef heart submitochondrial particles. Free Radic Biol Med 19:749–757. doi:10.1016/0891-5849(95)00076-A

    Article  CAS  PubMed  Google Scholar 

  • Forsmark-Andree P, Lee CP, Dallner G, Ernster L (1997) Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles. Free Radic Biol Med 22:391–400. doi:10.1016/S0891-5849(96)00330-9

    Article  CAS  PubMed  Google Scholar 

  • Glovinski J, Iverson LL (1966) Regional studies of catecholamines in the rat brain-I. The disposition of [3H]norepinephrine, [3Hldopamine and [3H]DOPA in various regions of the brain. J Neurochem 13:655–699. doi:10.1111/j.1471-4159.1966.tb09873.x

    Article  Google Scholar 

  • Gogvadze V, Zhivotovsky B (2007) Alteration of mitochondrial function and cell sensitization to death. J Bioenerg Biomembr 39:23–30. doi:10.1007/s10863-006-9054-x

    Article  CAS  PubMed  Google Scholar 

  • Griffith OW, Meister A (1985) Origin and turnover of mitochondrial glutathione. Proc Natl Acad Sci USA 82:4668–4672. doi:10.1073/pnas.82.14.4668

    Article  CAS  PubMed  Google Scholar 

  • Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307:93–98

    CAS  PubMed  Google Scholar 

  • Guerrieri F, Capozza G, Fratello A, Zanotti F, Papa S (1993) Functional and molecular changes in FoF1 ATP-synthase of cardiac muscle during aging. Cardioscience 4:93–98

    CAS  PubMed  Google Scholar 

  • Hargreaves AJ, Fowler MJ, Sachana M, Flaskos J, Bountouri M, Coutts IC, Glynn P, Harris W, McLean WG (2006) Inhibition of neurite outgrowth in differentiating mouse N2a neuroblastoma cells by phenyl saligenin phosphate: Effects on MAP kinase (ERK1/2) activation, neurofilament heavy chain phosphorylation and neuropathy target esterase activity. Biochem Pharmacol 71:1240–1247. doi:10.1016/j.bcp.2006.01.008

    Article  CAS  PubMed  Google Scholar 

  • Holmuhamedov EL, Kholmoukhamedova GL, Baimuradov TB (1996) Non-cholinergic toxicity of organophosphates in mammals: interaction of ethaphos with mitochondrial functions. J Appl Toxicol 16:475–481. doi:10.1002/(SICI)1099-1263(199611)16:6<475::AID-JAT376>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  • Itoh J, Nabeshima T, Kameyama T (1991) Utility of an elevated plus-maze for dissociation of amnesic and behavioral effects of drugs in mice. Eur J Pharmacol 194:71–76. doi:10.1016/0014-2999(91)90125-A

    Article  CAS  PubMed  Google Scholar 

  • Kamboj SS, Kumar V, Kamboj A, Sandhir R (2008) Mitochondrial oxidative stress and dysfunction in rat brain induced by carbofuran exposure. Cell Mol Neurobiol 28:961–969. doi:10.1007/s10571-008-9270-5

    Article  CAS  PubMed  Google Scholar 

  • Karalliedde L (1999) Organophosphorus poisoning and anaesthesia. Anaesthesia 54:1073–1088. doi:10.1046/j.1365-2044.1999.01061.x

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Radotra B, Ranjana W, Minz C, Gill KD (2007) Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Neurotoxicol 28:1208–1219. doi:10.1016/j.neuro.2007.08.001

    Article  CAS  Google Scholar 

  • King TE (1967) Preparation of succinate dehydrogenase and reconstitution of succinate oxidase. In: Colowic SP, Kaplan NO (eds) Methods in enzymology; vol. 10. Oxidation and phosphorylation. Academic Press, New York, pp 322–325

    Chapter  Google Scholar 

  • King TE, Howard RL (1967) Preparation and properties of soluble NADH dehydrogenase from cardiac muscle. In: Colowic SP, Kaplan NO (eds) Methods in enzymology; vol. 10. Oxidation and phosphorylation. Academic press, New York, pp 275–276

    Chapter  Google Scholar 

  • Koshkin V, Greenberg ML (2000) Oxidative phosphorylation in cardiolipin-lacking yeast mitochondria. Biochem J 347:687–691. doi:10.1042/0264-6021:3470687

    Article  CAS  PubMed  Google Scholar 

  • Li FC, Tseng HP, Chang AY (2005) Neuroprotective role of coenzyme Q10 against dysfunction of mitochondrial respiratory chain at rostral ventrolateral medulla during fatal mevinphos intoxication in the rat. Ann N Y Acad Sci 1042:195–202. doi:10.1196/annals.1338.048

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Peterson DA, Kimura H, Schubert D (1997) Mechanism of cellular 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 69:581–593

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Liu IY, Bi X, Thompson RF, Doctrow SR, Malfroy B, Baudry M (2003) Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci USA 100:8526–8531. doi:10.1073/pnas.1332809100

    Article  CAS  PubMed  Google Scholar 

  • Lotti M (1992) The pathogenesis of organophosphate polyneuropathy. Crit Rev Toxicol 21:465–487. doi:10.3109/10408449209089884

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbergh NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Łukaszewicz-Hussain A, Moniuszko-Jakoniuk J (2004) Chlorfenvinphos, an organophosphate insecticide, affects liver mitochondria antioxidative enzymes, glutathione and hydrogen peroxide concentration. Pol J Environ Stud 13:397–401

    Google Scholar 

  • Mahad D, Lassmann H, Turnbull D (2008) Mitochondria and disease progression in multiple sclerosis. Neuropathol Appl Neurobiol 34:577–589. doi:10.1111/j.1365-2990.2008.00987.x

    Article  CAS  PubMed  Google Scholar 

  • Mancuso M, Coppede F, Migliore L, Siciliano G, Murri L (2006) Mitochondrial dysfunction, oxidative stress and neurodegeneration. J Alzheimers Dis 10:59–73

    CAS  PubMed  Google Scholar 

  • Marrs TC (1993) Organophosphorous poisoning. Pharmacol Ther 58:51–66. doi:10.1016/0163-7258(93)90066-M

    Article  CAS  PubMed  Google Scholar 

  • Massicotte C, Knight K, Van der Schyf CJ, Jortner BS, Ehrich M (2005) Effects of organophosphorus compounds on ATP production and mitochondrial integrity in cultured cells. Neurotox Res 7:203–217

    Article  CAS  PubMed  Google Scholar 

  • Mehl A, Schanke TM, Johnsen BA, Fonnum F (1994) The effect of trichlorfon and other organophosphates on prenatal brain development in the guinea pig. Neurochem Res 19:569–574. doi:10.1007/BF00971332

    Article  CAS  PubMed  Google Scholar 

  • Meister A (1995) Mitochondrial changes associated with glutathione deficiency. Biochim Biophys Acta 1271:35–42

    PubMed  Google Scholar 

  • Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183. doi:10.1146/annurev.pharmtox.47.120505.105122

    Article  CAS  PubMed  Google Scholar 

  • Papa S (1996) Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Biochim Biophys Acta 1276:87–105. doi:10.1016/0005-2728(96)00077-1

    Article  PubMed  Google Scholar 

  • Partridge RS, Monroe SM, Parks JK, Johnson K, Parker WDJ, Eaton GR, Eaton SS (1994) Spin trapping of azidyl and hydroxyl radicals in azide-inhibited rat brain submitochondrial particles. Arch Biochem Biophys 310:210–217. doi:10.1006/abbi.1994.1159

    Article  CAS  PubMed  Google Scholar 

  • Picklo MJ, Montine TJ (2007) Mitochondrial effects of lipid-derived neurotoxins. J Alzheimers Dis 12:185–193

    CAS  PubMed  Google Scholar 

  • Ravindranath V, Reed DJ (1990) Glutathione depletion and formation of glutathione-protein mixed disulfide following exposure of brain mitochondria to oxidative stress. Biochem Biophys Res Commun 169:1075–1079. doi:10.1016/0006-291X(90)92004-J

    Article  CAS  PubMed  Google Scholar 

  • Roubertoux PL, Sluyter F, Carlier M, Marcet B, Maarouf-Veray F, Cherif C, Marican C, Arrechi P, Godin F, Jamon M, Verrier B, Cohen-Salmon C (2003) Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat Genet 35:65–69. doi:10.1038/ng1230

    Article  CAS  PubMed  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205. doi:10.1016/0003-2697(68)90092-4

    Article  CAS  PubMed  Google Scholar 

  • Sevim S, Aktekin M, Dogu O, Ozturk H, Ertas M (2003) Late onset polyneuropathy due to organophosphate (DDVP) intoxication. Can J Neurol Sci 30:75–78

    PubMed  Google Scholar 

  • Sharma SK, Bhattacharya BK (1995) Altered glycine transport by cerebral tissue and decreased Na+ and Ca2+ pump activities during organophosphorus-ester-induced delayed neurotoxicity development period. J Biochem Toxicol 5:233–238. doi:10.1002/jbt.2570100502

    Article  Google Scholar 

  • Sims NR, Nilsson M, Muyderman H (2004) Mitochondrial glutathione: a modulator of brain cell death. J Bioenerg Biomembr 36:329–333. doi:10.1023/B:JOBB.0000041763.63958.e7

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Ranjit A, Parthasarathy S, Sharma N, Bambery P (2004) Organophosphate induced delayed neuropathy: report of two cases. Neurol India 52:525–526

    PubMed  Google Scholar 

  • Smith S, Bennett JP (1997) Mitochondrial toxins in models of neurodegenerative diseases. I. In vivo brain hydroxyl radical production drug systemic MPTP treatment or following microdialysis infusion of methylpyridinium or azide ions. Brain Res 765:183–188. doi:10.1016/S0006-8993(97)00429-0

    Article  CAS  PubMed  Google Scholar 

  • Sokol RJ, Dwereaux M, Khandwala RA (1991) Effect of dietary lipid and vitamin E on mitochondrial lipid peroxidation and hepatic injury in the bile duct-ligated rat. J Lipid Res 32:1349–1357

    CAS  PubMed  Google Scholar 

  • Sotocassa GL, Bokuylenstiema E, Ernster L, Bergstrand A (1967) An electron transport system associated with the outer membrane of liver mitochondria. J Cell Biol 32:415–438. doi:10.1083/jcb.32.2.415

    Article  Google Scholar 

  • Soussi B, Idstrom JP, Schersten T, Bylund-Fellenius AC (1990) Cytochrome c oxidase and cardiolipin alterations in response to skeletal muscle ischaemia and reperfusion. Acta Physiol Scand 138:107–114. doi:10.1111/j.1748-1716.1990.tb08822.x

    Article  CAS  PubMed  Google Scholar 

  • Stahl WL, Smith JC, Napolitano LM, Basford RE (1963) Brain mitochondria I. Isolation of bovine brain mitochondria. J Cell Biol 19:293–307. doi:10.1083/jcb.19.2.293

    Article  CAS  PubMed  Google Scholar 

  • Thomas PK, Cooper JM, King RH, Workman JM, Schapira AH, Goss-Sampson MA, Muller DP (1993) Myopathy in vitamin E deficient rats: muscle fibre necrosis associated with disturbances of mitochondrial function. J Anat 183:451–461

    PubMed  Google Scholar 

  • Vasconcellos LF, Leite AC, Nascimento OJM (2002) Organophosphate-induced delayed neuropathy (case report). Arq Neuropsiquiatr 60:1003–1007

    PubMed  Google Scholar 

  • Wang YP, Mou D, Song JF, Rao ZR, Li D, Ju G (2006) Aberrant activation of CDK5 is involved in the pathogenesis of OPIDN. J Neurochem 99:186–197. doi:10.1111/j.1471-4159.2006.04027.x

    Article  CAS  PubMed  Google Scholar 

  • Wills ED (1966) Mechanism of lipid peroxide formation in animal tissue. Biochem J 99:667–676

    CAS  PubMed  Google Scholar 

  • Wolvetang EJ, Johnson KL, Krauer K, Ralph SJ, Linnane AW (1994) Mitochondrial respiratory chain inhibitors induce apoptosis. FEBS Lett 339:40–44

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Gupta RP, Abou-Donia MB (2002) Protein levels of neurofilament subunits in the hen central nervous system following prevention and potentiation of diisopropyl phosphorofluoridate (DFP)-induced delayed neurotoxicity. Biochem Pharmacol 63:11–19. doi:10.1016/S0006-2952(01)00858-9

    Article  CAS  PubMed  Google Scholar 

  • Zhang JG, Tirmenstein MA, Nicholls-Grzemski FA, Fariss MW (2001) Mitochondrial electron transport inhibitors cause lipid peroxidation-dependent and -independent cell death: protective role of antioxidants. Arch Biochem Biophys 393:87–96. doi:10.1006/abbi.2001.2486

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Sandhir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masoud, A., Kiran, R. & Sandhir, R. Impaired Mitochondrial Functions in Organophosphate Induced Delayed Neuropathy in Rats. Cell Mol Neurobiol 29, 1245–1255 (2009). https://doi.org/10.1007/s10571-009-9420-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9420-4

Keywords

Navigation