Skip to main content
Log in

Membrane perturbation through novel cell-penetrating peptides influences intracellular accumulation of imatinib mesylate in CML cells

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Chronic myeloid leukemia is a stem cell disease with the presence of Philadelphia chromosome generated through reciprocal translocation of chromosome 9 and 22. The use of first- and second-generation tyrosine kinase inhibitors has been successful to an extent. However, resistance against such drugs is an emerging problem. Apart from several drug-resistant mechanisms, drug influx/efflux ratio appears to be one of the key determinants of therapeutic outcomes. In addition, intracellular accumulation of drug critically depends on cell membrane fluidity and lipid raft dynamics. Previously, we reported two novel cell-penetrating peptides (CPPs), namely, cationic IR15 and anionic SR11 present in tryptic digest of Abrus agglutinin. Here, the potential of IR15 and SR11 to influence intracellular concentration of imatinib has been evaluated. Fluorescent correlation spectroscopy and lifetime imaging were employed to map membrane fluidity and lipid raft distribution following peptide-drug co-administration. Results show that IR15 and SR11 are the two CPPs which can modulate membrane fluidity and lipid raft distribution in K562 cells. Both IR15 and SR11 significantly reduce the viability of CML cells in the presence of imatinib by increasing the intracellular accumulation of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akbarzadeh A, Rezaei-sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(102):1–9.

    Google Scholar 

  • Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 2012;377(1998):377–80.

    Google Scholar 

  • Bacia K, Scherfeld D, Kahya N, Schwille P. Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys J. 2004;87(2):1034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badalà F, Nouri-mahdavi K, Raoof DA. Fluorescence lifetime imaging of biosensor peptide phosphorylation in single live cells. Angew Chem Int Ed Engl. 2008;144(5):724–32.

    Google Scholar 

  • Becker MW, Jordan CT. Leukemia stem cells in 2010: current understanding and future directions. Blood Rev. 2011;25(2):75–81.

    Article  CAS  PubMed  Google Scholar 

  • Behera B, Devi KSP, Mishra D, Maiti S, Maiti TK. Biochemical analysis and antitumour effect of Abrus precatorius agglutinin derived peptides in Ehrlich’s ascites and B16 melanoma mice tumour model. Environ Toxicol Pharmacol. 2014;38(1):288–96.

    Article  CAS  PubMed  Google Scholar 

  • Behera B, Mukherjee D, Agarwal T, Das J, Ghosh SK, Maiti TK. Cell penetrating peptides from agglutinin protein of Abrus precatorius facilitate the uptake of imatinib mesylate. Colloids Surf B: Biointerfaces. 2016;140:169–75.

    Article  CAS  PubMed  Google Scholar 

  • Béni S, Budai M, Noszál B, Gróf P. Molecular interactions in imatinib-DPPC liposomes. Eur J Pharm Sci. 2006;27(2–3):205–11.

    Article  PubMed  Google Scholar 

  • Berezin MMY, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem Rev. 2011;110(5):2641–84.

    Article  Google Scholar 

  • Bouchet, S., Dulucq, S., Pasquet, J-M., Lagarde, V., Molimard, M., & Mahon, F-X. From in vitro to in vivo: intracellular determination of imatinib and nilotinib may be related with clinical outcome. 2013; 1757–1759.

  • Boutin C, Roche Y, Millot C, Deturche R, Royer P, Manfait M, et al. High heterogeneity of plasma membrane microfluidity in multidrug-resistant cancer cells. J Biomed Opt. 2009;14(3):34030.

    Article  Google Scholar 

  • Branford S, Rudzki Z, Walsh S, Parkinson I, Grigg A, Szer J, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood. 2003;102(1):276–83.

    Article  CAS  PubMed  Google Scholar 

  • Copolovici DM, Langel K, Eriste E, Langel U. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano. 2014;8(3):1972–94.

    Article  CAS  PubMed  Google Scholar 

  • Cortese B, D’Amone S, Gigli G, Palamà IE. Sustained anti-BCR-ABL activity with pH responsive imatinib mesylate loaded PCL nanoparticles in CML cells. Med Chem Commun. 2015;6(1):212–21.

    Article  CAS  Google Scholar 

  • Das T, Maiti TK, Chakraborty S. Augmented stress-responsive characteristics of cell lines in narrow confinements. Integrative Biology: Quantitative Biosciences from Nano to Macro. 2011;3(6):684–95.

    Article  CAS  Google Scholar 

  • Delmas D, Aires V, Colin DJ, Limagne E, Scagliarini A, Cotte AK, et al. Importance of lipid microdomains, rafts, in absorption, delivery, and biological effects of resveratrol. Ann N Y Acad Sci. 2013;1290(1):90–7.

    Article  CAS  PubMed  Google Scholar 

  • Galdiero S, Falanga A, Cantisani M, Vitiello M, Morelli G, Galdiero M. Peptide-lipid interactions: experiments and applications. Int J Mol Sci. 2013;14(9):18758–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gendron PO, Avaltroni F, Wilkinson KJ. Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient-nuclear magnetic resonance and fluorescence correlation spectroscopy. J Fluoresc. 2008;18(6):1093–101.

    Article  CAS  PubMed  Google Scholar 

  • Harata M, Soda Y, Tani K, Ooi J, Takizawa T, Chen M, et al. CD19-targeting liposomes containing imatinib efficiently kill Philadelphia chromosome–positive acute lymphoblastic leukemia cells. Blood. 2004;104(5):1442–9.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Yamauchi J, Khalil IA, Kajimoto K, Akita H, Harashima H. Cell penetrating peptide-mediated systemic siRNA delivery to the liver. Int J Pharm. 2011;419(1–2):308–13.

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Zhao Y, Forrest D, Smith C, Eaves A, Eaves C. Stem cell biomarkers in chronic myeloid leukemia. Dis Markers. 2008;24(4–5):201–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin L, Tabe Y, Konoplev S, Xu Y, Leysath CE, Lu H, et al. CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol Cancer Ther. 2008;7(1):48–58.

    Article  CAS  PubMed  Google Scholar 

  • Jo J, Hong S, Choi WY, Lee DR. Cell-penetrating peptide (CPP)-conjugated proteins is an efficient tool for manipulation of human mesenchymal stromal cells. Sci Rep. 2014;4:4378.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kristensen M, Birch D, Nielsen HM. Applications and challenges for use of cell-penetrating peptides as delivery vectors for peptide and protein cargos. Int J Mol Sci. 2016;17(2)

  • Kundu N, Roy A, Banik D, Kuchlyan J, Sarkar N. Graphene oxide and pluronic copolymer aggregates—possible route to modulate the adsorption of fluorophores and imaging of live cells. J Phys Chem C. 2015;119(44):25023–35.

    Article  CAS  Google Scholar 

  • Labala S, Mandapalli PK, Kurumaddali A, Venuganti VVK. Layer-by-layer polymer coated gold nanoparticles for topical delivery of imatinib mesylate to treat melanoma. Mol Pharm. 2015;12(3):878–88.

    Article  CAS  PubMed  Google Scholar 

  • Mendonça LS, Moreira JN, De Lima MCP, Simões S. Co-encapsulation of anti-BCR-ABL siRNA and imatinib mesylate in transferrin receptor-targeted sterically stabilized liposomes for chronic myeloid leukemia treatment. Biotechnol Bioeng. 2010;107(5):884–93.

    Article  PubMed  Google Scholar 

  • Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today. 2012;17(15–16):850–60.

    Article  CAS  PubMed  Google Scholar 

  • Mollinedo F, de la Iglesia-Vicente J, Gajate C, Estella-Hermoso de Mendoza A, Villa-Pulgarin JA, Campanero MA, et al. Lipid raft-targeted therapy in multiple myeloma. Oncogene. 2010;29(26):3748–57.

    Article  CAS  PubMed  Google Scholar 

  • Moshe L, Saper G, Szekely O, Linde Y, Gilon C, Harries D, et al. Modulating the structure and interactions of lipid–peptide complexes by varying membrane composition and solution conditions. Soft Matter. 2013;9:7117–26.

    Article  CAS  Google Scholar 

  • Nitin N, LaConte LEW, Zurkiya O, Hu X, Bao G. Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J Biol Inorg Chem. 2004;9(6):706–12.

    Article  CAS  PubMed  Google Scholar 

  • Przybylska M. Cytotoxicity of daunorubicin in trisomic (+21) human fibroblasts: relation to drug uptake and cell membrane fluidity. Cell Biol Int. 2001;25(2):157–70.

    Article  CAS  PubMed  Google Scholar 

  • Przybylska M. Relevance of drug uptake, cellular distribution and cell membrane fluidity to the enhanced sensitivity of Down’s syndrome fibroblasts to anticancer antibiotic—mitoxantrone. Biochim Biophys Acta Biomembr. 2003;1611(1–2):161–70.

    Article  CAS  Google Scholar 

  • Radujkovic A, Schad M, Topaly J, Veldwijk MR, Laufs S, Schultheis BS, et al. Synergistic activity of imatinib and 17-AAG in imatinib-resistant CML cells overexpressing BCR-ABL—inhibition of P-glycoprotein function by 17-AAG. Leukemia. 2005;19(7):1198–206.

    Article  CAS  PubMed  Google Scholar 

  • Regner BM, Vučinić D, Domnisoru C, Bartol TM, Hetzer MW, Tartakovsky DM, et al. Anomalous diffusion of single particles in cytoplasm. Biophys J. 2013;104(8):1652–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stalmans S, Wynendaele E, Bracke N, Gevaert B, D’Hondt M, Peremans K, et al. Chemical-functional diversity in cell-penetrating peptides. PLoS One. 2013;8(8)

  • Sugahara KN, Teesalu T, Karmali PP, Ramana V. Co-administration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science. 2010;328(5981):1031–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabe Y, Jin L, Iwabuchi K, Wang R-Y, Ichikawa N, Miida T, et al. Role of stromal microenvironment in nonpharmacological resistance of CML to imatinib through Lyn/CXCR4 interactions in lipid rafts. Leukemia. 2012;26(5):883–92.

    Article  CAS  PubMed  Google Scholar 

  • Toba M, Alzoubi A, O’Neill K, Abe K, Urakami T, Komatsu M, et al. A novel vascular homing peptide strategy to selectively enhance pulmonary drug efficacy in pulmonary arterial hypertension. Am J Pathol. 2014;184(2):369–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaidya S, Vundinti BR, Shanmukhaiah C, Chakrabarti P, Ghosh K. Evolution of BCR/ABL gene mutation in CML is time dependent and dependent on the pressure exerted by tyrosine kinase inhibitor. PLoS One. 2015;10(1):1–14.

    Article  CAS  Google Scholar 

  • Wei G, Rafiyath S, Liu D. First-line treatment for chronic myeloid leukemia: dasatinib, nilotinib, or imatinib. J Hematol Oncol. 2010;3(1):47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Pan L, Hong M, Liu W, Qiao C, Li J, et al. The combination therapy of imatinib and dasatinib achieves long-term molecular response in two imatinib-resistant and dasatinib-intolerant patients with advanced chronic myeloid leukemia. Journal of Biomedical Research. 2016;30(6):525–8.

    PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Central Research Facility of IIT Kharagpur, DST, DBT, and Government of India for the financial and infrastructure support. D. Mukherjee acknowledges CSIR and Government of India for “Senior Research Fellowship.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Kumar Maiti.

Ethics declarations

Bone marrow samples were collected from the informed patients attending Medical College, Kolkata, after written consent. This study was approved by the Ethical Committee of Medical College, Kolkata, and was performed according to the guidelines of Indian Council of Medical Research, IIT, Kharagpur, and the Helsinki Declaration.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, D., Kundu, N., Chakravarty, L. et al. Membrane perturbation through novel cell-penetrating peptides influences intracellular accumulation of imatinib mesylate in CML cells. Cell Biol Toxicol 34, 233–245 (2018). https://doi.org/10.1007/s10565-017-9414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-017-9414-9

Keywords

Navigation