Skip to main content
Log in

Hierarchical Layered Porous SiO2 Supported Bimetallic NiM/EXVTM-SiO2 (M = Co, Cu, Fe) Catalysts Derived from Vermiculite for CO2 Reforming of Methane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, the two-dimensional layered porous silica material (EXVTM-SiO2) was designed and prepared by “expansion-acidification” modified vermiculite. Herein, NiM/EXVTM-SiO2 (M = Co, Cu, Fe) bimetallic catalysts were prepared by the incipient wetness impregnation method. Three kinds of bimetallic catalysts were used in methane reforming. The catalysts were characterized by techniques such as XRF, ICP, XRD, BET, SEM, TEM, XPS, H2-TPR and TG. It was found that NiCu/EXVTM-SiO2 catalyst had high catalytic activity and stability, and the conversion of CO2 was up to 92%, which realized the efficient catalytic conversion of CO2. On the one hand, the reason can be attributed to the fact that the active metal in the NiCu/EXVTM-SiO2 catalyst has a smaller particle diameter (10.6 nm) and a relatively high metal dispersibility. On the other hand, the Ni-Cu alloy has a significant effect on the adsorption and activation of CO2 at high temperature.

Graphic Abstract

NiM/EXVTM-SiO2 (M = Co, Cu, Fe) bimetallic catalysts was obtained by the incipient wetness impregnation method. Due to the synergistic effect between Ni and Cu, NiCu/EXVTM-SiO2 catalyst shows good performance in catalytic methane reforming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akbari E, Alavi SM, Rezaei M (2017) Synthesis gas production over highly active and stable nanostructured Ni-MgO-Al2O3 catalysts in dry reforming of methane: effects of Ni contents. Fuel 194:171–179

    Article  CAS  Google Scholar 

  2. Wang F, Han B, Zhang L, Xu L, Yu H, Shi W (2018) CO2 reforming with methane over small-sized Ni@SiO2 catalysts with unique features of sintering-free and low carbon. Appl Catal B Environ 235:26–35

    Article  CAS  Google Scholar 

  3. Tao Q, Wang Z, Jayasundera B, Guo C, Gan Y, Zhang L et al (2018) Enhanced catalytic activity of Ni–Mo2C/La2O3–ZrO2 bifunctional catalyst for dry reforming of methane. J Mater Sci 53:14559–14572

    Article  CAS  Google Scholar 

  4. Gao H, Yao Z, Shi Y, Wang S (2018) Improvement of catalytic stability of molybdenum carbide via encapsulation within carbon nanotubes in dry methane reforming. Catal Sci Technol 8:697–701

    Article  CAS  Google Scholar 

  5. Vafaeian Y, Haghighi M, Aghamohammadi S (2013) Ultrasound assisted dispersion of different amount of Ni over ZSM-5 used as nanostructured catalyst for hydrogen production via CO2 reforming of methane. Energy Convers Manage 76:1093–1103

    Article  CAS  Google Scholar 

  6. Stroud T, Smith TJ, Le Saché E, Santos JL, Centeno MA, Arellano-Garcia H et al (2018) Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Appl Catal B Environ 224:125–135

    Article  CAS  Google Scholar 

  7. Li B, Su W, Lin X, Wang X (2017) Catalytic performance and characterization of Neodymium-containing mesoporous silica supported nickel catalysts for methane reforming to syngas. Int J Hydrogen Energy 42:12197–12209

    Article  CAS  Google Scholar 

  8. Li S, Gong J (2014) Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions. Chem Soc Rev 43:7245–7256

    Article  CAS  PubMed  Google Scholar 

  9. San-José-Alonso D, Juan-Juan J, Illán-Gómez MJ, Román-Martínez MC (2009) Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane. Appl Catal A Gen 371:54–59

    Article  CAS  Google Scholar 

  10. Lu M, Zhang X, Deng J, Kuboon S, Faungnawakij K, Xiao S, Zhang D (2020) Coking-resistant dry reforming of methane over BN–nanoceria interface-confined Ni catalysts. Catal Sci Technol 10:4237–4244

    Article  CAS  Google Scholar 

  11. Bu K, Deng J, Zhang X, Kuboon S, Yan T, Li H, Shi L, Zhang D (2020) Promotional effects of B-terminated defective edges of Ni/boron nitride catalysts for coking- and sintering-resistant dry reforming of methane. Appl Catal B Environ 267:118692–118702

    Article  CAS  Google Scholar 

  12. Bu K, Kuboon S, Deng J, Li H, Yan T, Chen G, Shi L, Zhang D (2019) Methane dry reforming over boron nitride interface-confined and LDHs-derived Ni catalysts. Appl Catal B Environ 252:86–97

    Article  CAS  Google Scholar 

  13. Al-Fatesh A, Singh SK, Kanade GS, Atia H, Fakeeha AH, Ibrahim AA et al (2018) Rh promoted and ZrO2/Al2O3 supported Ni/Co based catalysts: high activity for CO2 reforming, steam–CO2 reforming and oxy–CO2 reforming of CH4. Int J Hydrogen Energy 43:12069–12080

    Article  CAS  Google Scholar 

  14. Foppa L, Silaghi M-C, Larmier K, Comas-Vives C-V (2016) Intrinsic reactivity of Ni, Pd and Pt surfaces in dry reforming and competitive reactions: insights from first principles calculations and microkinetic modeling simulations. J Catal 343:196–207

    Article  CAS  Google Scholar 

  15. Yue L, Li J, Chen C, Fu X, gong Y, Xia X, et al (2018) Thermal-stable Pd@mesoporous silica core-shell nanocatalysts for dry reforming of methane with good coke-resistant performance. Fuel 218:335–341

    Article  CAS  Google Scholar 

  16. Singh SA, Madras G (2016) Sonochemical synthesis of Pt, Ru doped TiO2 for methane reforming. Appl Catal A Gen 518:102–114

    Article  CAS  Google Scholar 

  17. Nataj SMM, Alavi SM, Mazloom G (2019) Catalytic performance of Ni supported on ZnO-Al2O3 composites with different Zn content in methane dry reforming. J Chem Technol Biotechnol 94:1305–1314

    Article  CAS  Google Scholar 

  18. Huang F, Wang R, Yang C, Driss H, Chu W, Zhang H (2016) Catalytic performances of Ni/mesoporous SiO2 catalysts for dry reforming of methane to hydrogen. J Energy Chem 25:709–719

    Article  Google Scholar 

  19. Kim SM, Abdala PM, Margossian T, Hosseini D, Foppa L, Armutlulu A et al (2017) Cooperativity and dynamics Increase the performance of NiFe dry reforming catalysts. J Am Chem Soc 139:1937–1949

    Article  CAS  PubMed  Google Scholar 

  20. Erdogan B, Arbag H, Yasyerli N (2018) SBA-15 supported mesoporous Ni and Co catalysts with high coke resistance for dry reforming of methane. Int J Hydrogen Energy 43:1396–1405

    Article  CAS  Google Scholar 

  21. Song K, Lu M, Xu S, Li D (2018) Effect of alloy composition on catalytic performance and coke-resistance property of Ni-Cu/Mg(Al)O catalysts for dry reforming of methane. Appl Catal B Environ 239:324–333

    Article  CAS  Google Scholar 

  22. Lu M, Fang J, Han L, Faungnawakij K, Li H, Cai S et al (2018) Coke-resistant defect-confined Ni-based nanosheet-like catalysts derived from halloysites for CO2 reforming of methane. Nanoscale 10:10528–10537

    Article  CAS  PubMed  Google Scholar 

  23. Liu H, Yao L, Taief HBH, Benzina M, Costa PD, Gálvez ME (2018) Natural clay-based Ni-catalysts for dry reforming of methane at moderate temperatures. Catal Today 306:51–57

    Article  CAS  Google Scholar 

  24. Mofrad BD, Rezaei M, Hayati-Ashtiani M (2019) Preparation and characterization of Ni catalysts supported on pillared nanoporous bentonite powders for dry reforming reaction. Int J Hydrogen Energy 44:27429–27444

    Article  CAS  Google Scholar 

  25. He Z, Lin H, Hao J, Kong X, Tian K, Bei Z et al (2018) Impact of vermiculite on ammonia emissions and organic matter decomposition of food waste during composting. Bioresour Technol 263:548–554

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, He Z, Zhou L, Hou Z, Eli W (2013) Simultaneous oxidative conversion and CO2 reforming of methane to syngas over Ni/vermiculite catalysts. Catal Commun 42:40–44

    Article  CAS  Google Scholar 

  27. Ashok J, Kathiraser Y, Ang ML, Kawi S (2015) Ni and/or Ni–Cu alloys supported over SiO2 catalysts synthesized via phyllosilicate structures for steam reforming of biomass tar reaction. Catal Sci Technol 5:4398–4409

    Article  CAS  Google Scholar 

  28. Ashok J, Kawi S (2014) Nickel−iron alloy supported over iron−alumina catalysts for steam reforming of biomass tar model compound. ACS Catal 4:289–301

    Article  CAS  Google Scholar 

  29. Li Z, Zhang L, Chen X, Li B, Wang H, Li Q (2019) Three-dimensional graphene-like porous carbon nanosheets derived from molecular precursor for high-performance supercapacitor application. Electrochim Acta 296:8–17

    Article  CAS  Google Scholar 

  30. Gao X-Q, Lu W-D, Hu S-Z, Li W-C, Lu A-H (2019) Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation. Chin J Catal 40:184–191

    Article  CAS  Google Scholar 

  31. Ay H, Üner D (2015) Dry reforming of methane over CeO2 supported Ni, Co and Ni–Co catalysts. Appl Catal B Environ 179:128–138

    Article  CAS  Google Scholar 

  32. Chia X, Pumera M (2018) Characteristics and performance of two-dimensional materials for electrocatalysis. Nat Catal 1:909–921

    Article  CAS  Google Scholar 

  33. Wang Y, Han P, Lv X, Zhang L, Zheng G (2018) Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2:2551–2582

    Article  CAS  Google Scholar 

  34. Wang J, Ma Q, Wang Y, Li Z, Li Z, Yuan Q (2018) New insights into the structure-performance relationships of mesoporous materials in analytical science. Chem Soc Rev 47:8766–8803

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y-R, Li X, Liao W-M, Jia A-P, Wang Y-J, Luo M-F et al (2019) Highly active Pt/BN catalysts for propane combustion: the roles of support and reactant-induced evolution of active sites. ACS Catal 9:1472–1481

    Article  CAS  Google Scholar 

  36. Peng H, Zhang X, Zhang L, Rao C, Lian J, Liu W et al (2017) One-pot facile fabrication of multiple nickel nanoparticles confined in microporous silica giving a Multiple-Cores@Shell structure as a highly efficient catalyst for methane dry reforming. ChemCatChem 9:127–136

    Article  CAS  Google Scholar 

  37. Xie T, Shi L, Zhang J, Zhang D (2014) Immobilizing Ni nanoparticles to mesoporous silica with size and location control via a polyol-assisted route for coking- and sintering-resistant dry reforming of methane. Chem Commun 50:7250–7253

    Article  CAS  Google Scholar 

  38. Pan Z, Wang R, Chen J (2018) Deoxygenation of methyl laurate as a model compound on Ni-Zn alloy and intermetallic compound catalysts: geometric and electronic effects of oxophilic Zn. Appl Catal B Environ 224:88–100

    Article  CAS  Google Scholar 

  39. Jin G, Gu F, Liu Q, Wang X, Jia L, Xu G et al (2016) Highly stable Ni/SiC catalyst modified by Al2O3 for CO methanation reaction. RSC Adv 6:9631–9639

    Article  CAS  Google Scholar 

  40. Song Q, Altaf N, Zhu M, Li J, Ren X, Dan J et al (2019) Enhanced low-temperature catalytic carbon monoxide methanation performance via vermiculite-derived silicon carbide-supported nickel nanoparticles. Sustain Energy Fuels 3:965–974

    Article  CAS  Google Scholar 

  41. Mousavi SM, Meshkani F, Rezaei M (2018) Preparation of nanocrystalline Zr, La and Mg-promoted 10% Ni/Ce0.95Mn0.05O2 catalysts for syngas production via dry reforming reaction. Int J Hydrogen Energy 43:6532–6538

    Article  CAS  Google Scholar 

  42. Hansen TW, Delariva AT, Challa SR, Datye AK (2013) Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc Chem Res 46:1720–1730

    Article  CAS  PubMed  Google Scholar 

  43. Juan-Juan J, Román-Martínez MC, Illán-Gómez MJ (2009) Nickel catalyst activation in the carbon dioxide reforming of methane. Appl Catal A Gen 355:27–32

    Article  CAS  Google Scholar 

  44. Arbag H, Yasyerli S, Yasyerli N, Dogu G, Dogu T (2016) Enhancement of catalytic performance of Ni based mesoporous alumina by Co incorporation in conversion of biogas to synthesis gas. Appl Catal B Environ 198:254–265

    Article  CAS  Google Scholar 

  45. Arbag H, Yasyerli S, Yasyerli N, Dogu G, Dogu T, Osojnik Črnivec IG et al (2015) Coke minimization during conversion of biogas to syngas by bimetallic tungsten-nickel incorporated mesoporous alumina synthesized by the one-pot route. Ind Eng Chem Res 54:2290–2301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21766029; 21566031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Wang, Z. & Li, Y. Hierarchical Layered Porous SiO2 Supported Bimetallic NiM/EXVTM-SiO2 (M = Co, Cu, Fe) Catalysts Derived from Vermiculite for CO2 Reforming of Methane. Catal Lett 151, 3675–3689 (2021). https://doi.org/10.1007/s10562-021-03606-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03606-8

Keywords

Navigation