Skip to main content

Advertisement

Log in

Calcination Temperature Effect in Catalyst Reactivity for the CO SELOX Reaction Using Perovskite-like LaBO3 (B: Mn, Fe, Co, Ni) Oxides

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

H2 production by conventional processes such as reforming reactions involves formation of some undesired products such as CO. Selective CO oxidation (SELOX) is a good alternative to reduce its concentration because it is a thermodynamically favorable process. Perovskite-like oxides (LaMO3) are used in this work to catalyze the CO-SELOX process and they were synthetized by the self-combustion method. All catalysts were calcined at different temperatures (400 °C–800 °C) to analyze its impact on the material physicochemical properties. Different analytical techniques were used to study changes in structural and chemical properties. Temperature-programmed reaction (TPRe), using CO oxidation and CO-SELOX, was used to measure the catalytic reactivity of perovskite-like oxides. It was found that catalytic activity decreases when calcination temperature (CT) increases and that is correlated with oxygen mobility, surface defects, and surface concentration of manganese or cobalt species. It is also found that there is a crystalline phase change in the solids when the CT increases from 500 to 600 °C. The high catalytic activity observed at low CT remained even if they were calcined below 600 °C, which implies the possibility of amorphous species having catalytic activity that do not require a well-structured perovskite.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schmal M, Perez CAC, Magalhães RNSH (2014) Synthesis and characterization of perovskite-type oxides La 1-xMxCoO3 (M = Ce, Sr) for the selective co oxidation (SELOX). Top Catal 57:1103–1111. https://doi.org/10.1007/s11244-014-0275-7

    Article  CAS  Google Scholar 

  2. Gamarra D, Martínez-Arias A (2009) Preferential oxidation of CO in rich H2 over CuO/CeO2: Operando-DRIFTS analysis of deactivating effect of CO2 and H2O. J Catal 263:189–195. https://doi.org/10.1016/j.jcat.2009.02.012

    Article  CAS  Google Scholar 

  3. Mariño F, Descorme C, Duprez D (2004) Noble metal catalysts for the preferential oxidation of carbon monoxide in the presence of hydrogen (PROX). Appl Catal B Environ 54:59–66. https://doi.org/10.1016/j.apcatb.2004.06.008

    Article  CAS  Google Scholar 

  4. Kim YH, Park ED, Lee HC et al (2009) Preferential CO oxidation over supported noble metal catalysts. Catal Today 146:253–259. https://doi.org/10.1016/j.cattod.2009.01.045

    Article  CAS  Google Scholar 

  5. Royer S, Duprez D, Can F et al (2014) Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem Rev 114:10292–10368. https://doi.org/10.1021/cr500032a

    Article  CAS  PubMed  Google Scholar 

  6. Monte M, Gamarra D, Cámara AL et al (2014) Preferential oxidation of CO in excess H2 over CuO/CeO2 catalysts: performance as a function of the copper coverage and exposed face present in the CeO2 support. Catal Today 229:104–113. https://doi.org/10.1016/j.cattod.2013.10.078

    Article  CAS  Google Scholar 

  7. Gamarra D, Hornés A, Koppány Z et al (2007) Catalytic processes during preferential oxidation of CO in H2-rich streams over catalysts based on copper-ceria. J Power Sources 169:110–116. https://doi.org/10.1016/j.jpowsour.2007.01.048

    Article  CAS  Google Scholar 

  8. Avgouropoulos G, Ioannides T, Papadopoulou C (2002) A comparative study of Pt / gamma -Al 2 O 3, Au /alfa-Fe 2 O 3 and CuO – CeO 2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catal Today 75:157–167. https://doi.org/10.1016/S0920-5861(02)00058-5

    Article  CAS  Google Scholar 

  9. Royer S, Duprez D (2011) Catalytic oxidation of carbon monoxide over transition metal Oxides. ChemCatChem 3:24–65. https://doi.org/10.1002/cctc.201000378

    Article  CAS  Google Scholar 

  10. Teng Y, Sakurai H, Ueda A, Kobayashi T (1999) Oxidative removal of CO contained in hydrogen by using metal oxide catalysts. Int Energy Hydrog 24:355–358. https://doi.org/10.1016/S0360-3199(98)00083-4

    Article  CAS  Google Scholar 

  11. Magalhães RNSH, Toniolo FS, Da Silva VT, Schmal M (2010) Selective CO oxidation reaction (SELOX) over cerium-doped LaCoO3 perovskite catalysts. Appl Catal A Gen 388:216–224. https://doi.org/10.1016/j.apcata.2010.08.052

    Article  CAS  Google Scholar 

  12. Tikhonovich VN, Zharkovskaya OM, Naumovich EN, Bashmakov IA (2003) Oxygen nonstoichiometry of Sr( Co, Fe)O3-d -based perovskites. I. Coulometric titration of SrCo0.85Fe0.10Cr0.05O3-d by the two-electrode technique. Solid State Ionics 160:259–270. https://doi.org/10.1016/S0167-2738(03)00187-5

    Article  CAS  Google Scholar 

  13. Chagas CA, Magalhães RNSH, Schmal M (2020) The LaCo1−xVxO3 Catalyst for CO Oxidation in Rich H2 Stream. Catal Lett. https://doi.org/10.1007/s10562-020-03303-y

    Article  Google Scholar 

  14. Tarjomannejad A, Niaei A, Farzi A et al (2016) Catalytic Oxidation of CO Over LaMn1−xBxO3 (B = Cu, Fe) Perovskite-type Oxides. Catal Letters 146:1544–1551. https://doi.org/10.1007/s10562-016-1788-4

    Article  CAS  Google Scholar 

  15. Pereñíguez R, Hueso JL, Gaillard F et al (2012) Study of oxygen reactivity in La1-XSrxCoO3-d perovskites for total oxidation of toluene. Catal Letters 142:408–416. https://doi.org/10.1007/s10562-012-0799-z

    Article  CAS  Google Scholar 

  16. Kucharczyk B (2015) Catalytic oxidation of carbon monoxide on Pd-Containing LaMnO3 perovskites. Catal Lett 145:1237–1245. https://doi.org/10.1007/s10562-015-1518-3

    Article  CAS  Google Scholar 

  17. Kucharczyk B, Tylus W (2008) Partial substitution of lanthanum with silver in the LaMnO3 perovskite: effect of the modification on the activity of monolithic catalysts in the reactions of methane and carbon oxide oxidation. Appl Catal A Gen 335:28–36. https://doi.org/10.1016/j.apcata.2007.11.004

    Article  CAS  Google Scholar 

  18. Wen Y, Zhang C, He H et al (2007) Catalytic oxidation of nitrogen monoxide over La1-xCexCoO3 perovskites. Catal Today 126:400–405. https://doi.org/10.1016/j.cattod.2007.06.032

    Article  CAS  Google Scholar 

  19. Maluf SS, Assaf EM (2011) CO preferential oxidation (CO-PROx) on La1−xCexNiO3 perovskites. Catal Commun 12:703–706. https://doi.org/10.1016/j.catcom.2010.12.022

    Article  CAS  Google Scholar 

  20. Levasseur B, Kaliaguine S (2009) Effects of iron and cerium in La1-y Ce y Co1-x FexO3 perovskites as catalysts for VOC oxidation. Appl Catal B, Environ 88:305–314. https://doi.org/10.1016/j.apcatb.2008.11.007

    Article  CAS  Google Scholar 

  21. French SA, Catlow CRA, Oldman RJ et al (2002) Solubility of cerium in LaCoO 3 – influence on catalytic activity. ChemComm. https://doi.org/10.1039/b208392mLanthanum

    Article  Google Scholar 

  22. Papargyriou D, Irvine JTS (2015) Nickel nanocatalyst exsolution from (La, Sr) (Cr, M, Ni)O3 (M=Mn, Fe) perovskites for the fuel oxidation layer of Oxygen Transport Membranes. Solid State Ionics 3:5–8. https://doi.org/10.1016/j.ssi.2015.11.007

    Article  CAS  Google Scholar 

  23. Hammami R, Aı SB, Batis H (2009) Effects of thermal treatment on physico-chemical and catalytic properties of lanthanum manganite LaMnO 3 + y. Appl Catal A Gen 353:145–153. https://doi.org/10.1016/j.apcata.2008.10.048

    Article  CAS  Google Scholar 

  24. Chick LA, Pederson LR, Maupin GD et al (1990) Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater Lett 10:6–12. https://doi.org/10.1016/0167-577X(90)90003-5

    Article  CAS  Google Scholar 

  25. Sastre E, Rida K, Benabbas A et al (2007) Effect of calcination temperature on the structural characteristics and catalytic activity for propene combustion of sol – gel derived lanthanum chromite perovskite. Appl Catal A Gen 327:173–179. https://doi.org/10.1016/j.apcata.2007.05.015

    Article  CAS  Google Scholar 

  26. Fierro JLG, Alonso JA, Fernández-díaz MT et al (2017) Structural effects of LaNiO 3 as electrocatalyst for the oxygen reduction reaction. Appl Catal B Environ 203:363–371. https://doi.org/10.1016/j.apcatb.2016.10.016

    Article  CAS  Google Scholar 

  27. Zhu Y, Tan R (2000) Preparation of nanosized LaCoO 3 perovskite oxide using amorphous heteronuclear complex as a precursor at low temperature. J Mater Sci 5:5415–5420

    Article  Google Scholar 

  28. Gosavi PV, Biniwale RB (2010) Pure phase LaFeO 3 perovskite with improved surface area synthesized using different routes and its characterization. Mater Chem Phys 119:324–329. https://doi.org/10.1016/j.matchemphys.2009.09.005

    Article  CAS  Google Scholar 

  29. Hammami R, Ben AS, Batis H (2009) Effects of thermal treatment on physico-chemical and catalytic properties of lanthanum manganite LaMnO3+y. Appl Catal A Gen 353:145–153. https://doi.org/10.1016/j.apcata.2008.10.048

    Article  CAS  Google Scholar 

  30. Gunasekaran N, Rajadurai S, Carberry JJ et al (1995) Surface characterization and catalytic properties of La1-xMO3 perovskite oxides. Part II. Studies on La1-xBaxMnO3 (0<x<0.2) oxides. Solid State Ionics 81:243–249

    Article  CAS  Google Scholar 

  31. Gunasekaran N, Rajadurai S, Carberry JJ et al (1994) Surface characterization and catalytic properties of La1-xAxMO3 perovskite type oxides. Part I. Studies on La0.95Ba0.05M03 (M=Mn, Fe or Co). Solid State Ionics 73:289–295. https://doi.org/10.1016/0167-2738(94)90046-9

    Article  CAS  Google Scholar 

  32. Li X, Dai H, Deng J et al (2013) In situ PMMA-templating preparation and excellent catalytic performance of Co3O4/3DOM La0.6Sr0.4CoO3 for toluene combustion. Appl Catal A Gen 458:11–20. https://doi.org/10.1016/j.apcata.2013.03.022

    Article  CAS  Google Scholar 

  33. Arandiyan H, Scott J, Wang Y et al (2016) Meso-molding three-dimensional macroporous perovskites: a new approach to generate high-performance nanohybrid catalysts. ACS Appl Mater Interfaces 8:2457–2463. https://doi.org/10.1021/acsami.5b11050

    Article  CAS  PubMed  Google Scholar 

  34. Si W, Wang Y, Peng Y, Li J (2015) Selective dissolution of a-site cations in ABO3 perovskites: a new path to high-performance catalysts. Angew Chemie - Int Ed 54:7954–7957. https://doi.org/10.1002/anie.201502632

    Article  CAS  Google Scholar 

  35. Ghasdi M, Alamdari H (2010) CO sensitive nanocrystalline LaCoO3perovskite sensor prepared by high energy ball milling. Sensors Actuators, B Chem 148:478–485. https://doi.org/10.1016/j.snb.2010.05.056

    Article  CAS  Google Scholar 

  36. Faye J, Guélou E, Barrault B et al (2009) LaFeO3 perovskite as new and performant catalyst for the wet peroxide oxidation of organic pollutants in ambient conditions. Top Catal 52:1211–1219. https://doi.org/10.1007/s11244-009-9264-7

    Article  CAS  Google Scholar 

  37. Chen H, Yu H, Peng F et al (2010) Autothermal reforming of ethanol for hydrogen production over. Chem Eng J 160:333–339. https://doi.org/10.1016/j.cej.2010.03.054

    Article  CAS  Google Scholar 

  38. Ivanova S, Senyshyn A, Zhecheva E et al (2010) Crystal structure, microstructure and reducibility of LaNixCo1-xO3 and LaFexCo1-xO3 Perovskites(0<x0.5). Solid State Chem 183:940–950. https://doi.org/10.1016/j.jssc.2010.02.009

    Article  CAS  Google Scholar 

  39. Sun S, Yang L, Pang G, Feng S (2011) Surface properties of Mg doped LaCoO3particles with large surface areas and their enhanced catalytic activity for CO oxidation. Appl Catal A Gen 401:199–203. https://doi.org/10.1016/j.apcata.2011.05.015

    Article  CAS  Google Scholar 

  40. Royer S, Bérubé F, Kaliaguine S (2005) Effect of the synthesis conditions on the redox and catalytic properties in oxidation reactions of LaCo1-xFexO3. Appl Catal A Gen 282:273–284. https://doi.org/10.1016/j.apcata.2004.12.018

    Article  CAS  Google Scholar 

  41. Royer S, Alamdari H, Duprez D, Kaliaguine S (2005) Oxygen storage capacity of La1-xA′xBO 3 perovskites (with A′ = Sr, Ce; B = Co, Mn) - Relation with catalytic activity in the CH4 oxidation reaction. Appl Catal B Environ 58:273–288. https://doi.org/10.1016/j.apcatb.2004.12.010

    Article  CAS  Google Scholar 

  42. Levasseur B, Kaliaguine S (2008) Methanol oxidation on LaBO3(B = Co, Mn, Fe) perovskite-type catalysts prepared by reactive grinding. Appl Catal A Gen 343:29–38. https://doi.org/10.1016/j.apcata.2008.03.016

    Article  CAS  Google Scholar 

  43. Sunding MF, Hadidi K, Diplas S et al (2011) XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. J Electron Spectros Relat Phenomena 184:399–400. https://doi.org/10.1016/j.elspec.2011.04.002

    Article  CAS  Google Scholar 

  44. Biesinger MC, Payne BP, Grosvenor AP et al (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  45. Rida K, Peña MA, Sastre E (2012) Effect of calcination temperature on structural properties and catalytic activity in oxidation reactions of LaNiO 3 perovskite prepared by Pechini method. Rare Earth 30:210–216. https://doi.org/10.1016/S1002-0721(12)60025-8

    Article  CAS  Google Scholar 

  46. Zhu J, Li H, Zhong L et al (2014) Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal 4:2917–2940. https://doi.org/10.1021/cs500606g

    Article  CAS  Google Scholar 

  47. Wang J, Su Y, Wang X et al (2012) The effect of partial substitution of Co in LaMnO 3 synthesized by sol – gel methods for NO oxidation. Catal Commun J 25:106–109. https://doi.org/10.1016/j.catcom.2012.04.001

    Article  CAS  Google Scholar 

  48. Chen J, Shen M, Wang X et al (2013) The influence of nonstoichiometry on LaMnO3 perovskite for catalytic NO oxidation. Appl Catal B, Environ 134–135:251–257. https://doi.org/10.1016/j.apcatb.2013.01.027

    Article  CAS  Google Scholar 

  49. Russo U, Nodari L, Faticanti M et al (2005) Local interactions and electronic phenomena in substituted LaFeO3 perovskites. Solid State Ionics 176:97–102. https://doi.org/10.1016/j.ssi.2004.06.001

    Article  CAS  Google Scholar 

  50. Royer S, Duprez D, Kaliaguine S (2006) Oxygen mobility in LaCoO3 perovskites. Catal Today 112:99–102. https://doi.org/10.1016/j.cattod.2005.11.020

    Article  CAS  Google Scholar 

  51. Lee YL, Kleis J, Rossmeisl J, Morgan D (2009) Ab initio energetics of LaBO3 (001) (B=Mn, Fe Co, and Ni) for solid oxide fuel cell cathodes. Phys Rev B - Condens Matter Mater Phys 80:1–20. https://doi.org/10.1103/PhysRevB.80.224101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to tank Universidad de Antioquia and the Colombian Administrative Department of Science, Technology and Innovation (COLCIENCIAS), for the Ph.D. Scholarship granted to JDT and to Enlazamundos program for financial support in the doctoral internship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Espinal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1050 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapia-P, J., Gallego, J. & Espinal, J.F. Calcination Temperature Effect in Catalyst Reactivity for the CO SELOX Reaction Using Perovskite-like LaBO3 (B: Mn, Fe, Co, Ni) Oxides. Catal Lett 151, 3690–3703 (2021). https://doi.org/10.1007/s10562-021-03601-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03601-z

Keywords

Navigation