Skip to main content

Advertisement

Log in

Controlled Synthesis of Copper-Doped Molybdenum Carbide Catalyst with Enhanced Activity and Stability for Hydrogen Evolution Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

As a promising alternative to precious metal catalysts, Molybdenum carbide (MoC) still cannot compete with commercial Pt catalysts in many aspects. In the present work, we develop a simple carburization method to synthesize synergistic MoC catalysts with highly dispersed copper. Addition of copper could effectively induce formation of α-phase of MoC and markedly improve electrochemical activity for HER reaction. When the doping ratio of Cu–Mo reaches 10:90, the Cu doped MoC displays the best catalytic performance, even compared with the commercial Pt/C catalyst. The enhanced HER activity for Cu–MoxCy can be attributed to the formation of active phase and also synergistic surface.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dresselhaus MS, Thomas IL (2001) Nature 414:332

    Article  CAS  Google Scholar 

  2. Turner JA (2004) Science 305:972

    Article  CAS  Google Scholar 

  3. Chen T, Tan YW (2018) Nano Res 11:1331

    Article  CAS  Google Scholar 

  4. Fan ZX, Luo ZM, Huang X, Li B, Chen Y, Wang J, Hu YL, Zhang H (2016) J Am Chem Soc 138:1414

    Article  CAS  PubMed  Google Scholar 

  5. Fei HL, Dong JC, Chen DL, Tour J (2016) Abstracts of Papers of the American Chemical Society. 251

  6. Kibsgard J, Chen ZB, Reinecke BN, Jaramillo TF (2012) Nat Mater 11:963

    Article  CAS  Google Scholar 

  7. Jiang P, Liu Q, Liang YH, Tian JQ, Asiri AM, Sun XP (2014) Angew Chem Int Ed 53:12855

    Article  CAS  Google Scholar 

  8. Chen WF, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu YM, Adzic RR (2012) Angew Chem Int Ed 51:6131

    Article  CAS  Google Scholar 

  9. Andreaiads ES, Jacques PA, Tran PD, Leyris A, Chavarot-Kerlidou M, Jousselme B, Matheron M, Pecaut J, Palacin S, Fontecave M, Artero V (2013) Nat Chem. 5:48

    Article  CAS  Google Scholar 

  10. Popczun EJ, Mckone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) J Am Chem Soc 135:9267

    Article  CAS  PubMed  Google Scholar 

  11. Shi Y, Zhou Y, Yang DR, Xu WX, Wang C, Wang FB, Xu JJ, Xia XH, Chen HY (2017) J Am Chem Soc 139:15479

    Article  CAS  PubMed  Google Scholar 

  12. Vrubel H, Hu XL (2012) Angew Chem Int Ed. 51:12703

    Article  CAS  Google Scholar 

  13. Li XY, Ma D, Chen LM, Bao XH (2007) Catal Lett 116:63

    Article  CAS  Google Scholar 

  14. Lin L, Zhou W, Gao R, Yao S, Zhang X, Xu W, Zheng S, Jiang Z, Yu Q, Li YW, Shi C, Wen XD, Ma D (2017) Nature 544:80

    Article  CAS  PubMed  Google Scholar 

  15. Kitchin JR, Norskov JK, Barteau MA, Chen JGG (2005) Catal Today 105:66

    Article  CAS  Google Scholar 

  16. Zhang Z, Li P, Feng Q, Wei B, Deng CL, Fan JT, Li H, Wang HJ (2018) ACS Appl Mater Inter 10:32171

    Article  CAS  Google Scholar 

  17. Yao SY, Zhang X, Zhou W, Gao R, Xu WQ, Ye YF, Lin LL, Wen XD, Liu P, Chen BB, Crumlin E, Guo JH, Zuo ZJ, Li WZ, Xie JL, Lu L, Kiely CJ, Gu L, Shi C, Rodriguez JA, Ma D (2017) Science 357:389

    Article  CAS  PubMed  Google Scholar 

  18. Ma YF, Guan GQ, Hao XG, Zuo ZJ, Huang W, Phanthong P, Kusakabe K, Abudula A (2014) RSC Adv 4:44175

    Article  CAS  Google Scholar 

  19. Deng YJ, Wiberg GKH, Zana A, Sun SG, Arenz M (2017) ACS Catal 7:1

    Article  CAS  Google Scholar 

  20. Liu YT, Ding J, Bi JC, Sun YP, Zhang J, Liu KF, Kong FH, Xiao HC, Chen JG (2017) Appl Catal A 529:143

    Article  CAS  Google Scholar 

  21. Lin HL, Liu N, Shi ZP, Guo YL, Tang Y, Gao QS (2016) Adv Mater 26:5590

    CAS  Google Scholar 

  22. Wan C, Leonard BM (2015) Chem Mater 27:4281

    Article  CAS  Google Scholar 

  23. Chen M, Ma YF, Zhou YQ, Liu CQ, Qin YL, Fang YX, Guan GQ, Li XM, Zhang ZS, Wang TJ (2018) Catalysts 8:294

    Article  CAS  Google Scholar 

  24. Zhang X, Zhu XB, Lin LL, Yao SY, Zhang MT, Liu X, Wang XP, Li YW, Shi C, Ma D (2017) ACS Catal 7:912

    Article  CAS  Google Scholar 

  25. Ma D, Shu YY, Cheng MJ, Xu YD, Bao XH (2000) J Catal 194:105

    Article  CAS  Google Scholar 

  26. Yang FK, Sliozberg K, Antoni H, Xia W, Muhler M (2016) Electroanalysis. 28:2293

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 21673273, 21872163, 21822801, 21576008, 91634116) and PetroChina Innovation Foundation (Grant No. 2016D-5007-0505).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daojian Cheng, Jiqin Zhu or Xi Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2660 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Wu, D., Dai, C. et al. Controlled Synthesis of Copper-Doped Molybdenum Carbide Catalyst with Enhanced Activity and Stability for Hydrogen Evolution Reaction. Catal Lett 149, 1368–1374 (2019). https://doi.org/10.1007/s10562-019-02695-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02695-w

Keywords

Navigation