Skip to main content
Log in

Aerobic Oxidation of Alcohols Catalysed by Cu(I)/NMI/TEMPO System and Its Mechanistic Insights

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Homogeneous Cu(I)/NMI/TEMPO catalyst system (TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl) has been investigated for its catalysis on the aerobic oxidation of 1-octanol and other alcohols into aldehydes under room temperature. The catalytic species was found to be a Cu(I) centre coordinated by two NMI molecules and other two weakly bound solvent molecules, [Cu(NMI)2(Sol)2]+ (Sol = solvent). When CuI was used, this species could be [Cu(NMI)I(Sol)2]. Not like being speculated previously, NMI in this system acts solely as a ligand and its role coordinated to the copper centre enhanced the electron density on the metal centre which promoted the O2 binding in the catalysis. The labile solvent binding to the Cu(I) centre is essential to ensure both oxygen and substrate binding. The catalyst system is suitable for the oxidation of various alcohols using a simple reaction setup and workup. In particular, the system possesses strong oxidizing capability in quantitative conversion of benzylic alcohols regardless of the substituents on the phenyl ring and allylic alcohols into aldehydes. A plausible mechanism was also proposed for the catalysis.

Graphical Abstract

The aerobic oxidation of primary alcohols at room temperature to corresponding aldehydes was achieved by the catalyst composed by Cu(I) and methyl imidazole (NMI) mediated by TEMPO in acetonitrile. The catalytic species is proposed to be such a Cu(I) complex that two of its four coordinating sites are occupied by a strong ligand(s) and the rest two are weakly bound by solvent molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Lammert M, Wharmby MT, Smolders S, Bueken B, Lieb A, Lomachenko KA, De Vos D, Stock N (2015) Chem Commun 51:12578

    Article  CAS  Google Scholar 

  2. Yan YT, Tong XL, Wang KX, Bai XQ (2014) Catal Commun 43:112

    Article  CAS  Google Scholar 

  3. Marui K, Higashiura Y, Kodama S, Hashidate S, Nomoto A, Yano S, Ueshima M, Ogawa A (2014) Tetrahedron 70:2431

    Article  CAS  Google Scholar 

  4. Hanson SK, Wu RL, Silks LA (2011) Org Lett 13:1908

    Article  CAS  PubMed  Google Scholar 

  5. Liu J, Ma S (2013) Org Lett 15:5150

    Article  CAS  PubMed  Google Scholar 

  6. Ma S, Liu J, Li S, Chen B, Cheng J, Kuang J, Liu Y, Wan B, Wang Y, Ye J, Yu Q, Yuan W, Yu S (2011) Adv Synth Catal 353:1005

    Article  CAS  Google Scholar 

  7. Wang L, Shang S, Li G, Ren L, Lv Y, Gao S (2016) J Org Chem 81:2189

    Article  CAS  PubMed  Google Scholar 

  8. Wendlandt AE, Suess AM, Stahl SS (2011) Angew Chem Int Ed 50:11062

    Article  CAS  Google Scholar 

  9. McCann SD, Stahl SS (2015) Acc Chem Res 48:1756

    Article  CAS  PubMed  Google Scholar 

  10. Punniyamurthy T, Rout L (2008) Coord Chem Rev 252:134

    Article  CAS  Google Scholar 

  11. Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC (2013) Chem Rev 113:6234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jazdzewski BA, Tolman WB (2000) Coord Chem Rev 200–202:633

    Article  Google Scholar 

  13. Thomas F (2007) Eur J Inorg Chem 2007:2379

    Article  CAS  Google Scholar 

  14. Lyons CT, Stack TDP (2013) Coord Chem Rev 257:528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ito N, Phillips SEV, Stevens C, Ogel ZB, McPherson MJ, Keen JN, Yadav KDS, Knowles PF (1991) Nature 350:87

    Article  CAS  PubMed  Google Scholar 

  16. Arends IWCE, Gamez P, Sheldon RA (2006) In: van Eldik R, Reedijk J (eds) Advances in Inorganic Chemistry. Academic Press, New York

    Google Scholar 

  17. Wang Y, DuBois JL, Hedman B, Hodgson KO, Stack TDP (1998) Science 279:537

    Article  CAS  PubMed  Google Scholar 

  18. Chaudhuri P, Hess M, Flörke U, Wieghardt K (1998) Angew Chem Int Ed 37:2217

    Article  CAS  Google Scholar 

  19. Chaudhuri P, Hess M, Weyhermüller T, Wieghardt K (1999) Angew Chem Int Ed 38:1095

    Article  CAS  Google Scholar 

  20. Chaudhuri P, Hess M, Müller J, Hildenbrand K, Bill E, Weyhermüller T, Wieghardt K (1999) J Am Chem Soc 121:9599

    Article  CAS  Google Scholar 

  21. Orio M, Jarjayes O, Kanso H, Philouze C, Neese F, Thomas F (2010) Angew Chem Int Ed 49:4989

    Article  CAS  Google Scholar 

  22. Pratt RC, Lyons CT, Wasinger EC, Stack TDP (2012) J Am Chem Soc 134:7367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhan G, Zhong W, Wei Z, Liu Z, Liu X (2017) Dalton Trans 46:8286

    Article  CAS  PubMed  Google Scholar 

  24. Lagerblom K, Lagerspets E, Keskiväli J, Cook C, Ekholm F, Parviainen A, Repo T (2017) ChemCatChem 9:3880

    Article  CAS  Google Scholar 

  25. Semmelhack MF, Schmid CR, Cortes DA, Chou CS (1984) J Am Chem Soc 106:3374

    Article  CAS  Google Scholar 

  26. Gamez P, Arends IWCE, Reedijk J, Sheldon RA (2003) Chem Commun 2414

  27. Kumpulainen ETT, Koskinen AMP (2009) Chem Eur J 15:10901

    Article  CAS  PubMed  Google Scholar 

  28. Hoover JM, Stahl SS (2011) J Am Chem Soc 133:16901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoover JM, Ryland BL, Stahl SS (2013) J Am Chem Soc 135:2357

    Article  CAS  PubMed  Google Scholar 

  30. Hoover JM, Steves JE, Stahl SS (2012) Nat Protocols 7:1161

    Article  CAS  PubMed  Google Scholar 

  31. Xu B, Lumb J-P, Arndtsen BA (2015) Angew Chem Int Ed 54:4208

    Article  CAS  Google Scholar 

  32. Lipshutz BH, Hageman M, Fennewald JC, Linstadt R, Slack E, Voigtritter K (2014) Chem Commun 50:11378

    Article  CAS  Google Scholar 

  33. Mannam S, Alamsetti SK, Sekar G (2007) Adv Synth Catal 349:2253

    Article  CAS  Google Scholar 

  34. Zhang G, Han X, Luan Y, Wang Y, Wen X, Ding C (2013) Chem Commun 49:7908

    Article  CAS  Google Scholar 

  35. Hoover JM, Ryland BL, Stahl SS (2013) ACS Catal 3:2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adomeit S, Rabeah J, Surkus AE, Bentrup U, Brückner A (2017) Inorg Chem 56:684

    Article  CAS  PubMed  Google Scholar 

  37. Steves JE, Preger Y, Martinelli JR, Welch CJ, Root TW, Hawkins JM, Stahl SS (2015) Org Process Res Dev 19:1548

    Article  CAS  Google Scholar 

  38. Sheldrick G (2008) Acta Crystallogr Sect A 64:112

    Article  CAS  Google Scholar 

  39. Zeng XH, Li ZM, Xiao ZY, Wang YW, Liu XM (2010) Electrochem Commun 12:342

    Article  CAS  Google Scholar 

  40. Zeng XH, Li ZM, Liu XM (2010) Electrochim Acta 55:2179

    Article  CAS  Google Scholar 

  41. Gamez P, Arends IWCE, Sheldon RA, Reedijk J (2004) Adv Synth Catal 346:805

    Article  CAS  Google Scholar 

  42. Marais L, Bures J, Jordaan JHL, Mapolie S, Swarts AJ (2017) Org Biomol Chem 15:6926

    Article  CAS  PubMed  Google Scholar 

  43. Thongkam P, Jindabot S, Prabpai S, Kongsaeree P, Wititsuwannakul T, Surawatanawong P, Sangtrirutnugul P (2015) RSC Adv 5:55847

    Article  CAS  Google Scholar 

  44. Kajita Y, Arii H, Saito T, Saito Y, Nagatomo S, Kitagawa T, Funahashi Y, Ozawa T, Masuda H (2007) Inorg Chem 46:3322

    Article  CAS  PubMed  Google Scholar 

  45. Park GY, Qayyum MF, Woertink J, Hodgson KO, Hedman B, Narducci Sarjeant AA, Solomon EI, Karlin KD (2012) J Am Chem Soc 134:8513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garcia-Bosch I, Cowley RE, Díaz DE, Peterson RL, Solomon EI, Karlin KD (2017) J Am Chem Soc 139:3186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB (2017) Chem Rev 117:2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rabeah J, Bentrup U, Stößer R, Brückner A (2015) Angew Chem Int Ed 54:11791

    Article  CAS  Google Scholar 

  49. Iron MA, Szpilman AM (2017) Chem Eur J 23:1368

    Article  CAS  PubMed  Google Scholar 

  50. Ryland BL, McCann SD, Brunold TC, Stahl SS (2014) J Am Chem Soc 136:12166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (Grant No. 21571083), the Natural Science Foundation of Zhejiang Province (Grant No. LY18B010007), China-Australia Institute for Green Materials and Manufacturing Foundation of Jiaxing University (Grant No. 70117012), the Government of Zhejiang Province (Qianjiang Professorship for XL) and Jiaxing University (Summit Program of Jiaxing University for Leading Talents) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhong or Xiaoming Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1796 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Shen, Z., Zhang, N. et al. Aerobic Oxidation of Alcohols Catalysed by Cu(I)/NMI/TEMPO System and Its Mechanistic Insights. Catal Lett 148, 2709–2718 (2018). https://doi.org/10.1007/s10562-018-2485-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2485-2

Keywords

Navigation