Skip to main content

Advertisement

Log in

Dry Reforming of Methane at High Pressure in a Fixed-Bed Reactor with Axial Temperature Profile Determination

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A continuously operated flow setup with fixed-bed reactor and online gas analysis enabled kinetic investigations of catalysts for the carbon dioxide reforming of methane under industrially relevant conditions at temperatures up to 1000 °C and at pressures up to 20 bar. A coaxial reactor design consisting of an inner- and an outer highly alloyed steel tube allowed obtaining axial temperature profiles by means of a moveable thermocouple. A NiAl2O4-based catalyst was tested at 820 °C and pressures of 1, 10 or 20 bar and compared to a conventional Ni catalyst used for steam reforming of methane. A significant cold spot was detected even when using only 10 mg of catalysts diluted in 1 g of silicon carbide. The specifically designed NiAl2O4/Al2O3 dry reforming catalyst with a high dispersion of the active Ni0 phase was found to be far superior to the conventional steam reforming catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Düdder H, Kähler K, Krause B, Mette K, Kühl S, Behrens M, Scherer V, Muhler M (2014) Catal Sci Technol 4:3317–3328

    Article  Google Scholar 

  2. Titus J, Roussière T, Wasserschaff G, Schunk S, Milanov A, Schwab E, Wagner G, Oeckler O, Gläser R (2016) Catal Today 270:68–75

    Article  CAS  Google Scholar 

  3. Rostrup-Nielsen JR (2004) Catal Rev 46(3–4):247–270

    Article  CAS  Google Scholar 

  4. Schulz LA, Kahle LCS, Herrera Delgado K, Schunk SA, Jentys A, Deutschmann O, Lercher JA (2015) Appl Catal A 504:599–607

    Article  CAS  Google Scholar 

  5. Verykios XE (2003) Int J Hydrogen Energy 28:1045–1063

    CAS  Google Scholar 

  6. Shamsi A, Johnson CD (2003) Catal Today 84:17–25

    Article  CAS  Google Scholar 

  7. Djinovic P, Crnivec IGO, Pintar A (2015) Catal Today 253:155–162

    Article  CAS  Google Scholar 

  8. Wehinger GD, Kraume M, Berg V, Korup O, Mette K, Schlögl R, Behrens M, Horn R (2016) AIChE J 62:4436–4452

    Article  CAS  Google Scholar 

  9. Mette K, Kühl S, Tarasov A, Lunkenbein T, Willinger MG, Kröhnert J, Wrabetz S, Trunschke A, Düdder H, Kähler K, Friedel-Ortega K, Muhler M, Schlögl R, Behrens M (2016) ACS Catal 6:7238–7248

    Article  CAS  Google Scholar 

  10. Oyama ST, Hacarlioglu P, Gu Y, Lee D (2012) Int J Hydrogen Energy 37:10444–10450

    Article  CAS  Google Scholar 

  11. Misture ST, McDevitt KM, Glass KC, Edwards DD, Howe JY, Rector KD, He H, Vogel SC (2015) Catal Sci Technol 5:4565–4574

    Article  CAS  Google Scholar 

  12. Benrabaa R, Barama A, Boukhlouf H, Guerrero-Caballero J, Rubbens A, Bordes-Richard E, Löfberg A, Vannier RN (2017) Int J Hydrogen Energy 42:12989–12996

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Muhler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tillmann, L., Schulwitz, J., van Veen, A. et al. Dry Reforming of Methane at High Pressure in a Fixed-Bed Reactor with Axial Temperature Profile Determination. Catal Lett 148, 2256–2262 (2018). https://doi.org/10.1007/s10562-018-2453-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2453-x

Keywords

Navigation