Skip to main content
Log in

Alkaline Earth (Ca, Mg) and Transition (La, Y) Metals Promotional Effects on Zn–Al Catalysts During Diethyl Carbonate Synthesis from Ethyl Carbamate and Ethanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Diethyl carbonate, an important member in the family of organic carbonates, is a fuel additive like dimethyl carbonate (DMC). It holds an extra edge of having better gasoline/water distribution coefficient than DMC, and also DEC is widely used as an electrolyte in lithium ion batteries. Ethanolysis of ethyl carbamate (EC) is the most economical and greener route for DEC synthesis. Zn–Al–M (M=Ca, La, Mg and Y) have been synthesized using two methods and their activity have been explored DEC systhesis from EC and ethanol. The catalysts were characterized using thermogravimetric analysis, Brunauer, Emmett and Teller surface area, N2 adsorption–desorption textural analysis, X-ray diffraction (XRD), Fourier transform infrared spectroscopy, temperature-programmed desorption (TPD), atomic-force microscopy and Raman spectroscopy. Pure metal oxides were observed during the XRD analysis and Al2O3 was found to be in amorphous form. Third metal oxide prepared from impregnation method was found to be present on the surface as well as in impregnated form. CO2-TPD analysis showed close correlation between the basicity and the DEC yield. Zn–Al–Mg, prepared from precipitation method, being most basic, was found to be most effective although the performances of Zn–Al–Ca and Zn–Al–La were good. The effect of precipitants was also studied by synthesizing Zn–Al–Mg using NaOH and liquid NH3 as precipitants. DEC yield of 40.2% and turn over frequency of 1055 mgDEC gcat −1 h−1 was obtained in 5 h at 190 °C using Zn–Al–Mg prepared from precipitation method. Effect of reaction conditions was also studied and equilibrium constant of the reaction was estimated using the Benson group contribution method.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Behr A (1988) Angew Chem Int Edit 27:661–678

    Article  Google Scholar 

  2. Zhang Y, Zhang S, Benson T (2015) Fuel Process Technol 131:7–13

    Article  CAS  Google Scholar 

  3. Choi YJ, Sivanesan D, Lee J, Youn MH, Park KT, Kim HJ, Grace AN, Kim IH, Jeong SK (2016) J Ind Eng Chem 34:76–83

    Article  CAS  Google Scholar 

  4. Kumar P, Srivastava VC, Gläser R, Mishra IM (2017) Powder Technol 309:13–21

    Article  CAS  Google Scholar 

  5. Zhang Y, Zhang S, Lou HH, Gossage JL, Benson TJ (2014) Chem Eng Technol 37:1493–1499

    Article  CAS  Google Scholar 

  6. Huang S, Liu S, Li J, Zhao N, Wei W, Sun Y (2006) Catal Lett 112:187–191

    Article  CAS  Google Scholar 

  7. Tomishige K, Yasuda H, Yoshida Y, Nurunnabi M, Li B, Kunimori K (2004) Catal Lett 95:45–49

    Article  CAS  Google Scholar 

  8. Eta V, Mäki-Arvela P, Salminen E, Salmi T, Murzin DY, Mikkola JP (2011) Catal Lett 141:1254

    Article  CAS  Google Scholar 

  9. Kumar P, With P, Srivastava VC, Gläser R, Mishra IM (2017) J Alloy Compd 696:718–726

    Article  CAS  Google Scholar 

  10. Schäffner B, Schäffner F, Verevkin SP, Börner A (2010) Chem Rev 110:4554–4581

    Article  Google Scholar 

  11. Pacheco MA, Marshall CL (1997) Energy Fuel 11:2–29

    Article  CAS  Google Scholar 

  12. Olmos RG, Iglesias M, Goenaga JM, Resa JM (2007) Int J Thermophys 28:1199–1227

    Article  Google Scholar 

  13. Olmos RG, Iglesias M, Goenaga JM, Resa JM (2007) Phys Chem Liq 45:515–524

    Article  Google Scholar 

  14. Shukla K, Srivastava VC (2017) Fuel Process Technol 161:116–124

    Article  CAS  Google Scholar 

  15. Dunn BC, Guenneau C, Hilton SA, Pahnke J, Eyring EM, Dworzanski J, Meuzelaar HL, Hu JZ, Solum MS, Pugmire RJ (2002) Energy Fuel 16:177–181

    Article  CAS  Google Scholar 

  16. Wang D, Yang B, Zhai X, Zhou L (2007) Fuel Process Technol 88:807–812

    Article  CAS  Google Scholar 

  17. Zhang X, Jia D, Zhang J, Sun Y (2014) Catal Lett 144:2144–2150

    Article  CAS  Google Scholar 

  18. Fan M, Zhang P, Ma X (2007) Fuel 86:902–905

    Article  CAS  Google Scholar 

  19. Zhang P, Zhou Y, Fan M, Jiang P (2015) Appl Surf Sci 332:379–383

    Article  CAS  Google Scholar 

  20. Zhang P, Zhou Y, Fan M, Jiang P (2014) Appl Surf Sci 295:50–53

    Article  CAS  Google Scholar 

  21. Ma X, Fan M, Zhang P (2004) Catal Commun 5:765–770

    Article  CAS  Google Scholar 

  22. Pimprom S, Sriboonkham K, Dittanet P, Föttinger K, Rupprechter G, Kongkachuichay P (2015) J Ind Eng Chem 31:156–166

    Article  CAS  Google Scholar 

  23. Filippis PD, Scarsella M, Borgianni C, Pochetti F (2006) Energy Fuel 20:17–20

    Article  Google Scholar 

  24. Fan M, Zhang P (2007) Energy Fuel 21:633–635

    Article  CAS  Google Scholar 

  25. Kumar P, With P, Srivastava VC, Shukla K, Gläser R, Mishra IM (2016) RSC Adv 6:110235–110246

    Article  CAS  Google Scholar 

  26. Keller T, Holtbruegge J, Górak A (2012) Chem Eng J 180:309–322

    Article  CAS  Google Scholar 

  27. Shukla K, Srivastava VC (2016) RSC Adv 6:32624–32645

    Article  CAS  Google Scholar 

  28. Shukla K, Srivastava VC (2017) Catal Rev 5:1–43

    Article  Google Scholar 

  29. Lian G, Xinqiang Z, Hualiang A, Yanji W (2012) Chinese J Catal 33:595–600

    Article  Google Scholar 

  30. Wang DF, Zhang XL (2012) Adv Mater Res 479:1768–1771

    Google Scholar 

  31. An H, Zhao X, Guo L, Jia C, Yuan B, Wang Y (2012) Appl Catal A 433:229–235

    Article  Google Scholar 

  32. Qin XY, Liu B, Han B, Zhao WB, Wu SS, Lian PC (2013) Adv Mater Res 821:1081–1084

    Article  Google Scholar 

  33. Wang L, Li H, Xin S, Li F (2014) Catal Commun 50:49–53

    Article  Google Scholar 

  34. Xin S, Wang L, Li H, Huang K, Li F (2014) Fuel Process Technol 126:453–459

    Article  CAS  Google Scholar 

  35. Wang P, Liu S, Zhou F, Yang B, Alshammari AS, Deng Y (2015) RSC Adv 5:19534–19540

    Article  CAS  Google Scholar 

  36. Li F, Li H, Wang L, He P, Cao Y (2015) Catal Sci Technol 5:1021–1034

    Article  CAS  Google Scholar 

  37. Wang D, Zhang X, Liu C, Cheng T, Wei W, Sun Y (2015) Appl Catal A 505:478–486

    Article  CAS  Google Scholar 

  38. Zhao W, Feng D, Nong J, Cao G, Liu X, Tang Z, Chen Y (2016) React Kinet Mech Catal 117:639–654

    Article  CAS  Google Scholar 

  39. Lee JH, Ko KH, Park BO (2003) J Cryst Growth (247:):119–125

    Article  CAS  Google Scholar 

  40. Li J, Pan Y, Xiang C, Ge Q, Guo J (2006) Ceram Int 32:587–591

    Article  CAS  Google Scholar 

  41. Siqingaowa Z, Yao H (2006) Front Chem China 1:277–280

    Article  Google Scholar 

  42. ALOthman ZA (2012) Materials 5:2874–2902

    Article  CAS  Google Scholar 

  43. Wei T, Wang M, Wei W, Sun Y, Zhong B (2003) Fuel Process Technol 83:175–182

    Article  CAS  Google Scholar 

  44. Wang S, Zhao L, Wang W, Zhao Y, Zhang G, Ma X, Gong J (2013) Nanoscale 5:5582–5588

    Article  CAS  Google Scholar 

  45. Rabiah-Nizah MF, Taufiq-Yap YH, Rashid U, Teo SH, Nur ZAS, Islam A (2014) Energy Convers Manag 88:1257–1262

    Article  CAS  Google Scholar 

  46. Silambarasan M, Saravanan S, Soga T (2015) Phys E 71:109–116

    Article  CAS  Google Scholar 

  47. Zappa D, Bertuna A, Comini E, Molinari M, Poli N, Sberveglieri G (2015) Anal Methods 7:2203–2209

    Article  CAS  Google Scholar 

  48. Benson SW, Cruickshank FR, Golden DM, Haugen GR, O’neal HE, Rodgers AS, Shaw R, Walsh R (1969) Chem Rev 69:279–324

    Article  CAS  Google Scholar 

  49. Zábranský M, Růžička VJ (2004) Phys Chem Ref Data 33:1071–1081

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kartikeya Shukla or Vimal Chandra Srivastava.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 564 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, K., Srivastava, V.C. Alkaline Earth (Ca, Mg) and Transition (La, Y) Metals Promotional Effects on Zn–Al Catalysts During Diethyl Carbonate Synthesis from Ethyl Carbamate and Ethanol. Catal Lett 147, 1891–1902 (2017). https://doi.org/10.1007/s10562-017-2097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2097-2

Keywords

Navigation