Skip to main content
Log in

A New Type of Magnetically-Recoverable Heteropolyacid Nanocatalyst Supported on Zirconia-Encapsulated Fe3O4 Nanoparticles as a Stable and Strong Solid Acid for Multicomponent Reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel highly efficient magnetically retrievable catalyst was developed by the immobilization of H3PW12O40 (20–60 wt%) on the surface of zirconia-encapsulated Fe3O4 nanoparticles. The prepared HPW supported on nano-Fe3O4@ZrO2 heterogeneous acid catalyst (or n-Fe3O4@ZrO2/HPW) was fully characterized by several physicochemical techniques such as: Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, vibrating sample magnetometry and thermogravimetric analysis. The FT-IR spectroscopic data revealed that H3PW12O40 molecules on the nano-Fe3O4@ZrO2 support existed in the Keggin structure. The acidity of the catalyst was measured by the help of a potentiometric titration with n-butylamine. It was surprising that this very strong solid acid catalyst exhibited an excellent acid strength which was as a result of possessing a higher number of surface active sites compared to its homogeneous analogues. The catalytic activity of the as-prepared novel nano-Fe3O4@ZrO2/HPW was explored through the one-pot three-component synthesis of different 3,4-dihydropyrimidin-2(1H)-ones (i.e. Biginelli reaction) and 1,4-dihydropyridines (i.e. Hantzsh reaction) under solvent free condition. The sample of 40 wt% showed higher acidity and activity in the catalytic transformation. After the reaction, the catalyst/product isolation could be easily achieved with an external magnetic field and the catalyst could be easily recycled for at least five times without any decrease in its high catalytic activity. The excellent recyclability was attributed to the strong interaction between the hydroxyl groups of the nano-Fe3O4@ZrO2 support and the HPW species.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 10

Similar content being viewed by others

References

  1. Sheldon RA (2008) Chem Commun 28:3352–3365

    Article  Google Scholar 

  2. Sheldon RA, Bekkum HV (2008) Fine chemicals through heterogeneous catalysis. John Wiley & Sons, Weinheim

    Google Scholar 

  3. Rafiee E, Eavani S, (2011) Green Chem 13:2116–2122

    Article  CAS  Google Scholar 

  4. Gawande MB, Branco PS, Varma RS (2013) Chem Soc Rev 42:3371–3393

    Article  CAS  Google Scholar 

  5. Kumar A, Parella R, Babu SA (2014) Synlett 25:835–842

    Article  CAS  Google Scholar 

  6. Mrówczyński R, Nan A, Liebscher J (2014) RSC Adv 4:5927–5952

    Article  Google Scholar 

  7. Shylesh S, Schünemann V, Thiel WR (2010) Angew Chem Int Ed, 49:3428–3459

    Article  CAS  Google Scholar 

  8. Hudson R, Feng Y, Varma RS, Moores A (2014) Green Chem 16:4493–4505

    Article  CAS  Google Scholar 

  9. Zhu X, Niu J, Zhang F, Zhou J, Li X, Ma J (2014) New J Chem 38:4622–4627

    Article  CAS  Google Scholar 

  10. Pujari SP, Scheres L, Marcelis A, Zuilhof H (2014) Angew Chem Int Ed 53:6322–6356

    Article  CAS  Google Scholar 

  11. Xuan S, Jiang W, Gong X, Hu Y, Chen Z (2008) J Phys Chem C 113:553–558

    Article  Google Scholar 

  12. Li Y, Leng T, Lin H, Deng C, Xu X, Yao N, Yang P, Zhang X (2007) J Proteome Res 6:4498–4510

    Article  CAS  Google Scholar 

  13. El-Din TAS, Elzatahry AA, Aldhayan DM, Al-Enizi AM, Al-Deyab SS (2011) Int J Electrochem Sci 6:6177–6183

    Google Scholar 

  14. Chen Z, Xue Z, Chen L, Geng Z, Yang R, Chen L, Wang Z (2013) New J Chem 37:3731–3736

    Article  CAS  Google Scholar 

  15. Kašpar J, Fornasiero P, Hickey N (2003) Catal Today 77:419–449

    Article  Google Scholar 

  16. Yamaguchi T (1994) Catal Today 20:199–217

    Article  CAS  Google Scholar 

  17. Hu CW, Hashimoto M, Okuhara T, Misono M (1993) J Catal 143:437–448

    Article  CAS  Google Scholar 

  18. Kozhevnikov IV (1998) Chem Rev 98:171–198

    Article  CAS  Google Scholar 

  19. Ingle RH, Vinu A, Halligudi SB (2008) Catal Commun 9:931–938

    Article  CAS  Google Scholar 

  20. Manyar HG, Chaure GS, Kumar A (2006) J Mol Catal A 243:244–252

    Article  CAS  Google Scholar 

  21. Parida KM, Mallick S (2007) J Mol Catal A 275:77–83

    Article  CAS  Google Scholar 

  22. Wu Y, Ye X, Yang X, Wang X, Chu W, Hu Y (1996) Ind Eng Chem Res 35:2546–2560

    Article  CAS  Google Scholar 

  23. Alemán J, Cabrera S (2013) Chem Soc Rev 42:774–793

    Article  Google Scholar 

  24. Domling A, Wang W, Wang K (2012) Chem Rev 112:3083–3135

    Article  CAS  Google Scholar 

  25. Slobbe P, Ruijter E, Orru RVA (2012) MedChemComm 3:1189–1218

    Article  CAS  Google Scholar 

  26. Sheldon RA (2012) Chem Soc Rev 41:1437–1451

    Article  CAS  Google Scholar 

  27. Gu Y (2012) Green Chem 14:2091–2128

    Article  CAS  Google Scholar 

  28. Singh MS, Chowdhury S (2012) RSC Adv 2:4547–4592

    Article  CAS  Google Scholar 

  29. Syamala M (2009) Org Prep Proced Int 41:1–68

    Article  CAS  Google Scholar 

  30. Climent MJ, Corma A, Iborra S (2012) RSC Adv 2:16–58

    Article  CAS  Google Scholar 

  31. Graaff CD, Ruijter E, Orru RVA (2012) Chem Soc Rev 41:3969–4009

    Article  Google Scholar 

  32. Panda SS, Khanna P, Khanna L (2012) Curr Org Chem 16:507–520

    Article  CAS  Google Scholar 

  33. Toure BB, Hall DG (2009) Chem Rev 109:4439–4486

    Article  CAS  Google Scholar 

  34. Wegner J, Ceylan S, Kirschning A (2012) Adv Synth Catal 354:17–57

    Article  CAS  Google Scholar 

  35. Filipan-Litvić M, Litvić M, Vinković V (2008) Tetrahedron 64:5649–5656

    Article  Google Scholar 

  36. Gaudio AC, Korolkovas A, Takahata Y (1994) J Pharm Sci 83:1110–1115

    Article  CAS  Google Scholar 

  37. Mohammadi B, Jamkarani SMH, Kamali TA, Nasrollahzadeh M, Mohajeri A (2010) Turk J Chem 34:613–619

    CAS  Google Scholar 

  38. Atwal KS, Rovnyak GC, Kimball SD, Floyd DM, Moreland S, Swanson BN, Gougoutas JZ, Schwartz J, Smillie KM, Malley MF (1990) J Med Chem 33:2629–2635

    Article  CAS  Google Scholar 

  39. Zorkun IS, Saraç S, Çelebi S, Erol K (2006) Bioorg Med Chem 14:8582–8589

    Article  CAS  Google Scholar 

  40. Schnell B, Strauss UT, Verdino P, Faber K, Kappe CO (2000) Tetrahedron 11:1449–1453

    Article  CAS  Google Scholar 

  41. Bose DS, Sudharshan M, Chavhan SW (2005) Arkivoc 3:228–236

    Google Scholar 

  42. Yadlapalli RK, Chourasia OP, Vemuri K, Sritharan M, Perali RS(2012) Bioorg Med Chem Lett 22:2708–2711

    Article  CAS  Google Scholar 

  43. Jayakumar S, Shabeer TK (2011) J Chem Pharm Res 3:1089–1096

    CAS  Google Scholar 

  44. Hosseini MM, Kolvari E (2016) Chem Lett 45:1–4

    Google Scholar 

  45. Hosseini MM, Kolvari E, Koukabi N, Ziyaei M, Zolfigol MA (2016) Catal Lett 146:1040–1049

    Article  CAS  Google Scholar 

  46. Kolvari E, Koukabi N, Armandpour O (2014) Tetrahedron 70:1383–1386

    Article  CAS  Google Scholar 

  47. Kolvari E, Koukabi N, Hosseini MM (2015) J Mol Catal A 397:68–75

    Article  CAS  Google Scholar 

  48. Kolvari E, Koukabi N, Hosseini MM, Khandani Z (2015) RSC Adv 5:36828–36836

    Article  CAS  Google Scholar 

  49. Kolvari E, Koukabi N, Hosseini MM, Vahidian M, Ghobadi E (2016) RSC Adv 6:7419–7425

    Article  CAS  Google Scholar 

  50. Kolvari E, Zolfagharinia S (2016) RSC Adv 6:93963–93974

    Article  CAS  Google Scholar 

  51. Koukabi N, Kolvari E, Khazaei A, Zolfigol MA, Shaghasemi BS, Khavasi HR (2011) Chem Commun 47:9230–9232

    Article  CAS  Google Scholar 

  52. Koukabi N, Kolvari E, Zolfigol MA, Khazaei A, Shaghasemi BS, Fasahatib B (2012) Adv Synth Catal 354:2001–2008

    Article  CAS  Google Scholar 

  53. Qu S, Yang H, Ren D, Kan S, Zou G, Li D, Li M (1999) J Colloid Interface Sci 215:190–192

    Article  CAS  Google Scholar 

  54. Sun Y, Ma M, Zhang Y, Gu N (2004) Colloid Surf A 245:15–19

    Article  CAS  Google Scholar 

  55. Rafiee E, Joshaghani M, Eavani S, Rashidzadeh S (2008) Green Chem 10:982–989

    Article  CAS  Google Scholar 

  56. Chakravarty R, Shukla R, Ram R, Tyagi AK, Dash A, Venkatesh M (2010) Chromatographia 72:875–884

    Article  CAS  Google Scholar 

  57. Kooti M, Afshari M (2012) Mater Res Bull 47:3473–3478

    Article  CAS  Google Scholar 

  58. Zhao Y, Tao C, Xiao G, Wei G, Li L, Liu C, Su H (2016) Nanoscale 8:5313–5326

    Article  CAS  Google Scholar 

  59. Kumar AP, Kim JH, Thanh TD, Lee YI (2013) J Mater Chem B 1:4909–4915

    Article  CAS  Google Scholar 

  60. Ghanbari-Siahkali A, Philippou A, Dwyer J, Anderson MW (2000) Appl Catal A 192:57–69

    Article  CAS  Google Scholar 

  61. He NY, Woo CS, Kim HG, Lee HI (2005) Appl Catal A 281:167–178

    Article  CAS  Google Scholar 

  62. Newman AD, Brown DR, Siril P, Lee AF, Wilson K (2006) Phys Chem Chem Phys 8:2893–2902

    Article  CAS  Google Scholar 

  63. Hodnett BK, Moffat JB (1984) J Catal 88:253–263

    Article  CAS  Google Scholar 

  64. Southward BWL, JS Vaughan, CT Oconnor (1995) J Catal 153:293–303

    Article  CAS  Google Scholar 

  65. D’alessandro O, Sathicq AG, Palermo V, Sanchez LM, Thomas H, Vazquez P, Constantieux T, Romanelli G (2012) Curr Org Chem 16:2763–2769

    Article  Google Scholar 

  66. Rafiee E, Shahebrahimi S (2012) Chin J Catal 33:1326–1333

    Article  CAS  Google Scholar 

  67. Nasr-Esfahani M, Hoseini SJ, Montazerozohori M, Mehrabi R, Nasrabadi H (2014) J Mol Catal A 382:99–105

    Article  CAS  Google Scholar 

  68. Murthy YLN, Rajack A, Ramji MT, Praveen C, Lakshmi KA (2012) Bioorg Med Chem Lett 22:6016–6023

    Article  CAS  Google Scholar 

  69. Kuraitheerthakumaran A, Pazhamalai S, Gopalakrishnan M (2011) Chin Chem Lett 22:1199–1202

    CAS  Google Scholar 

  70. Ghosh S, Saikh F, Das J, Pramanik AK (2013) Tetrahedron Lett 54:58–62

    Article  CAS  Google Scholar 

  71. Wang S-X, Li Z-Y, Zhang J-C, Li J-T (2008) Ultrason Sonochem 15:677–680

    Article  CAS  Google Scholar 

  72. Debache A, Ghalem W, Boulcina R, Belfaitah A, Rhouati S, Carboni B (2009) Tetrahedron Lett 50:5248–5250

    Article  CAS  Google Scholar 

  73. Heydari A, Khaksar S, Tajbakhsh M, Bijanzadeh HR (2009) J Flourine Chem 130:609–614

    Article  CAS  Google Scholar 

  74. Salehi H, Guo Q-X (2004) Synth Commun 34:4349–4357

    Article  CAS  Google Scholar 

  75. Avalani JR, Patel DS, Raval DK (2012) J Chem Sci 124:1091–1096

    Article  CAS  Google Scholar 

  76. Bose DS, Fatima L, Mereyala HB (2003) J Org Chem 68:587

    Article  CAS  Google Scholar 

  77. Fu NY, Yuan YF, Cao Z, Wang SW, Wang JT, Peppe C (2002) Tetrahedron 58:4801

    Article  CAS  Google Scholar 

  78. Hu EH, Sidler DR, Dolling UH (1998) J Org Chem, 63:3454–3457

    Article  CAS  Google Scholar 

  79. Nasr-Esfahani M, Khosropour R (2005) Bull Korean Chem Soc 26:1331

    Article  CAS  Google Scholar 

  80. Bigi F, Carloni S, Frullanti B, Maggi R, Sartori G (1999) Tetrahedron Lett 40:3465–3468

    Article  CAS  Google Scholar 

  81. Reddy KR, Reddy CV, Mahesh M, PVK Raju, VVN Reddy (2003) Tetrahedron Lett 44:8173–8175

    Article  Google Scholar 

  82. Salehi P, Dabiri M, Zolfigol MA, Fard MAB (2003) Tetrahedron Lett 44:2889–2891

    Article  CAS  Google Scholar 

  83. Yadav JS, Subba BV, Reddy KB, Raj KS, Prasad AR (2001) J Chem Soc Perkin Trans 1(1):1939–1941

    Article  Google Scholar 

  84. Kumar A, Maurya RA (2007) Tetrahedron Lett, 48:4569–4571

    Article  CAS  Google Scholar 

  85. Su W, Lia J, Zhengb Z, Shen Y (2005) Tetrahedron Lett, 46:6037–6040

    Article  CAS  Google Scholar 

  86. Hekmatshoar R, Heidari M, Heravi MM, Baghernejad B (2009) J Korean Chem Soc 53:90–94

    Article  CAS  Google Scholar 

  87. Nasr-Esfahani M, Hoseini SJ, Mohammadi F (2011) Chin J Catal 32:1484–1489

    Article  CAS  Google Scholar 

  88. Mansoor SS, Logaiya K, Sudhan SPN (2013) J King Saud Univ Sci 25:191–199

    Article  Google Scholar 

  89. Viswanath IVK, Murthy YLN (2013) Chem Sci Trans 2:227–233

    Article  Google Scholar 

  90. Adibi H, Samimi HA, Beygzadeh M (2007) Catal Commun 8:2119–2124

    Article  CAS  Google Scholar 

  91. Sabitha G, Arundhathi K, Sudhakar K, Sastry BS, Yadav JS (2009) Synth Commun 39:2843–2851

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Semnan University Research Council for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eskandar Kolvari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5157 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolfagharinia, S., Kolvari, E. & Koukabi, N. A New Type of Magnetically-Recoverable Heteropolyacid Nanocatalyst Supported on Zirconia-Encapsulated Fe3O4 Nanoparticles as a Stable and Strong Solid Acid for Multicomponent Reactions. Catal Lett 147, 1551–1566 (2017). https://doi.org/10.1007/s10562-017-2015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2015-7

Keywords

Navigation