Skip to main content
Log in

Fluorinated Mg–Al Hydrotalcites Derived Basic Catalysts for Transesterification of Glycerol with Dimethyl Carbonate

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of fluorinated Mg–Al hydrotalcite-like (HTl) compounds were prepared by introduction of different amount of (AlF6)3− into HTl sheets via co-precipitation method. The fluorine-modified Mg–Al mixed oxides (CHT-F) with mesoporous structure were then acquired by thermal decomposition of as-prepared HTl precursors. The influence of fluorine modifier on the physicochemical properties of CHT-F samples was studied in detail and the results demonstrated that their structure and basicity were strongly related to the fluorine content. Simultaneously, the CHT-F samples were test for the glycerol carbonate (GC) production via transesterification between glycerol and dimethyl carbonate without organic solvent. For these catalysts, the role of basic sites was examined based on reactant conversion and product selectivities in overall reaction as well as in side reaction identified in this work. The catalytic results showed that the activity of CHT-F catalysts depended on the total number of surface basic sites. However, further study demonstrated that the undesired product was catalyzed by strong basic sites, resulting in decrease of GC selectivity. Thus, the introduction of appropriate amount of (AlF6)3− into the HTl structure can promote the production of GC, and the best catalytic performance was obtained over the catalyst with F:Al = 1.0. Besides, various parameters including reaction time, reaction temperature and catalyst amount were investigated to optimize the reaction conditions. Furthermore, these CHT-F catalysts possessed high stability on the basis of reusability test and catalyst characterization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Clomburg JM, Gonzalez R (2013) Trends Biotechnol 31:20–28

    Article  CAS  Google Scholar 

  2. Zhou CH, Zhao H, Tong DS, Wu LM, Yu WH (2013) Catal Rev 55:369–453

    Article  CAS  Google Scholar 

  3. Ayoub M, Abdullah AZ (2012) Renew Sustain Energ Rev 16:2671–2686

    Article  CAS  Google Scholar 

  4. Sonnati MO, Amigoni S, Givenchy EPT, Darmanin T, Choulet O (2013) Green Chem 15:283–306

    Article  CAS  Google Scholar 

  5. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD (2007) Angew Chem Int Ed 46:4434–4440

    Article  CAS  Google Scholar 

  6. Ochoa-Gómez JR, Gómez-Jiménez-Aberasturi O, Ramírez-López C, Belsué M (2012) Org Process Res Dev 16:389–399

    Article  Google Scholar 

  7. Ochoa-Gómez JR, Gómez-Jiménez-Aberasturi O, Maestro-Madurga B, Pesquera-Rodríguez A, Ramírez-López C, Lorenzo-Ibarreta L, Torrecilla-Soria J, Villarán-Velasco MC (2009) Appl Catal A 366:315–324

    Article  Google Scholar 

  8. Kim SC, Kim YH, Lee H, Yoon DY, Song BK (2007) J Mol Catal B 49:75–78

    Article  CAS  Google Scholar 

  9. Simanjuntak FSH, Choi JS, Lee G, Lee HJ, Lee SD, Cheong M, Kim HS, Lee H (2015) App Catal B 165:642–650

    Article  CAS  Google Scholar 

  10. Hu K, Wang H, Liu Y, Yang Ch (2015) J Ind Eng Chem 28:334–343

    Article  CAS  Google Scholar 

  11. Cavani F, Trifirò F, Vaccari A (1991) Catal Today 11:173–301

    Article  CAS  Google Scholar 

  12. Liu P, Derchi M, Hensen EJM (2014) Appl Catal B 144:135–143

    Article  Google Scholar 

  13. Zhang LH, Zheng C, Li F, Evans DG, Duan X (2008) J Mater Sci 43:237–243

    Article  Google Scholar 

  14. Busca G, Costantino U, Marmottini F, Montanari T, Patrono P, Pinzari F, Ramis G (2006) Appl Catal A 310:70–78

    Article  CAS  Google Scholar 

  15. Wang SH, Wang YB, Dai YM, Jehng JM (2012) Appl Catal A 439–440:135–141

    Article  Google Scholar 

  16. Takagaki A, Iwatani K, Nishimura S, Ebitani K (2010) Green Chem 12:578–581

    Article  CAS  Google Scholar 

  17. Alvarez MG, Segarra AM, Contreras S, Sueiras JE, Medina F, Figueras F (2010) Chem Eng J 161:340–345

    Article  CAS  Google Scholar 

  18. Malyaadri M, Jagadeeswaraiah K, Prasad PSS, Lingaiah N (2011) Appl Catal A 401:153–157

    Article  CAS  Google Scholar 

  19. Parameswaram G, Srinivas M, Babu BH, Prasad PSS, Lingaiah N (2013) Catal Sci Technol 3:3242–3249

    Article  CAS  Google Scholar 

  20. Liu Zh, Wang J, Kang M, Yin N, Wang X, Tan Y, Zhu Y (2015) J Ind Eng Chem 21:394–399

    Article  CAS  Google Scholar 

  21. Zheng L, Xia Sh, Lu X, Hou Zh (2015) Chin J Catal 36:1759–1765

    Article  CAS  Google Scholar 

  22. Granados-Reyes J, Salagre P, Cesteros Y (2016) Appl Clay Sci 132–133:216–222

    Article  Google Scholar 

  23. Li H, Xin Ch, Jiao X, Zhao N, Xiao F, Li L, Wei W, Sun YH (2015) J Mol Catal A 402:71–78

    Article  CAS  Google Scholar 

  24. Wu GD, Xiao XL, Chen B, Li JP, Zhao N, Wei W, Sun YH (2007) Appl Catal A 329:106–111

    Article  CAS  Google Scholar 

  25. Gao P, Li F, Zhan H, Zhao N, Xiao F, Wei W, Zhong L, Sun YH (2014) Catal Commun 50:78–82

    Article  CAS  Google Scholar 

  26. Lima E, Martínez-Ortiz MD, Reyes RIG, Vera M (2012) Inorg Chem 51:7774–7781

    Article  CAS  Google Scholar 

  27. Lima E, Pfeiffer H, Flores J (2014) Appl Clay Sci 88–89:26–32

    Article  Google Scholar 

  28. Gao P, Yang H, Zhang L, Zhang Ch, Zhong L, Wang H, Wei W, Sun YH (2016) J CO2 Util 16:32–41

  29. Millange F, Walton RI, O’Hare D (2000) J Mater Chem 10:1713–1720

    Article  CAS  Google Scholar 

  30. Ma QX, Zhao TSh, Wang D, Niu WQ, Lv P, Tsubaki N (2013) Appl Catal A 464–465:142–148

    Article  Google Scholar 

  31. Prescott HA, Li Zh, Kemnitz E, Deutsch J, Lieske H (2005) J Mater Chem 15:4616–4628

    Article  CAS  Google Scholar 

  32. Tanabe K, Misono M, Ono Y, Hattori H (1989) New solid acids and bases studies in the surface science and catalysis. Elsevier, Amsterdam, pp 14–16

    Google Scholar 

  33. Liu Z, Cortés-concepción JA, Mustian M, Amiridis MD (2006) Appl Catal A 302:232–236

    Article  CAS  Google Scholar 

  34. Rokicki G, Rakoczy P, Parzuchowski P, Sobiecki M (2005) Green Chem 7:529–539

    Article  CAS  Google Scholar 

  35. Unnikrishnan P, Srinivas D (2012) Ind Eng Chem Res 51:6356–6363

    Article  CAS  Google Scholar 

  36. Bai R, Wang Y, Wang Sh, Mei F, Li T, Li G (2013) Fuel Process Technol 106:209–214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support from “Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issues” of the Chinese Academy of Sciences Grants (XDA05010108), National Natural Science Foundation of China (21401164), the Natural Science Foundation of Shandong Province, China (ZR2016BL21, ZR2013BL019), and National Training Programs of Innovation and Entrepreneurship for Undergraduates (311190805, 311190806, 201510904007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuelan Zhang or Dengfeng Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 340 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, D., Ma, J. et al. Fluorinated Mg–Al Hydrotalcites Derived Basic Catalysts for Transesterification of Glycerol with Dimethyl Carbonate. Catal Lett 147, 1181–1196 (2017). https://doi.org/10.1007/s10562-017-2013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2013-9

Keywords

Navigation