Skip to main content
Log in

Transformation of Au3M/SiO2 (M = Ni, Co, Fe) into Au–MO x /SiO2 Catalysts for the Reduction of p-Nitrophenol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Bimetallic Au3M (M = Ni, Co, Fe) nanoparticles (NPs) were synthesized by reducing a mixture of Au3+ and metal cations (Ni2+, Co2+, Fe3+) by butyllithium in the presence of oleylamine. Au3M NPs were then deposited onto a commercial SiO2 support. The Au3M/SiO2 samples were not particularly active in the catalytic reduction of p-nitrophenol unless they were converted into Au–MO x /SiO2 after appropriate thermal treatment in air. The Au–MO x /SiO2 catalysts showed good thermal stability and significantly higher p-nitrophenol conversions than Au/SiO2. Relevant characterization was conducted employing X-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectroscopy, and ultraviolet–visible spectroscopy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405–408

    Article  Google Scholar 

  2. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301–309

    Article  CAS  Google Scholar 

  3. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175–192

    Article  CAS  Google Scholar 

  4. Hashmi ASK, Hutchings GJ (2005) Angew Chem Int Ed 44:6990–6993

    Article  CAS  Google Scholar 

  5. Bond GC, Louis C, Thompson DT (2006) Catalysis by gold. Imperial College Press, London

    Google Scholar 

  6. Takei T, Akita K, Nakamura I, Fujitani T, Okumura M, Okazaki K, Huang JH, Ishida T, Haruta M (2012) Adv Catal 55:1–126

    CAS  Google Scholar 

  7. Scirè S, Liotta LF (2012) Appl Catal B 125:222–246

    Article  Google Scholar 

  8. Barakat T, Rooke JC, Genty E, Cousin R, Siffert S, Su BL (2013) Energ Environ Sci 6:371–391

    Article  CAS  Google Scholar 

  9. Corma A, Garcia H (2008) Chem Soc Rev 37:2096–2126

    Article  CAS  Google Scholar 

  10. Della Pina C, Falletta E, Rossi M (2012) Chem Soc Rev 41:350–369

    Article  CAS  Google Scholar 

  11. Zhang Y, Cui XJ, Shi F, Deng YQ (2012) Chem Rev 112:2467–2505

    Article  CAS  Google Scholar 

  12. Cao AM, Lu RW, Veser G (2010) Phys Chem Chem Phys 12:13499–13510

    Article  CAS  Google Scholar 

  13. Ma Z, Dai S (2011) Nano Res 4:3–32

    Article  CAS  Google Scholar 

  14. Ma Z, Dai S (2011) ACS Catal 1:805–818

    Article  CAS  Google Scholar 

  15. Wu BH, Zheng NF (2013) Nano Today 8:168–197

    Article  Google Scholar 

  16. Liu XY, Wang XQ, Zhang T, Mou CY (2013) Nano Today 8:403–416

    Article  CAS  Google Scholar 

  17. Yan WF, Mahurin SM, Pan ZW, Overbury SH, Dai S (2005) J Am Chem Soc 127:10480–10481

    Article  CAS  Google Scholar 

  18. Ma Z, Overbury SH, Dai S (2007) J Mol Catal A 273:186–197

    Article  CAS  Google Scholar 

  19. Zhu HG, Ma Z, Overbury SH, Dai S (2007) Catal Lett 116:128–135

    Article  CAS  Google Scholar 

  20. Ma Z, Brown S, Howe JY, Overbury SH, Dai S (2008) J Phys Chem C 112:9448–9457

    Article  CAS  Google Scholar 

  21. Yin HF, Wang C, Zhu HG, Overbury SH, Sun SH, Dai S (2008) Chem Commun 44:4357–4359

    Article  Google Scholar 

  22. Wu BH, Zhang H, Chen C, Lin SC, Zheng NF (2009) Nano Res 2:975–983

    Article  CAS  Google Scholar 

  23. Zhou SH, Yin HF, Schwartz V, Wu ZL, Mullins D, Eichhorn B, Overbury SH, Dai S (2008) ChemPhysChem 9:2470–2475

    Google Scholar 

  24. Zhou SH, Ma Z, Yin HF, Wu ZL, Eichhorn B, Overbury SH, Dai S (2009) J Phys Chem C 113:5758–5765

    Article  CAS  Google Scholar 

  25. Liu XY, Wang AQ, Li L, Zhang T, Mou CY, Lee JF (2011) J Catal 278:288–296

    Article  CAS  Google Scholar 

  26. Bauer JC, Mullins D, Li MJ, Wu ZL, Payzant EA, Overbury SH, Dai S (2011) Phys Chem Chem Phys 13:2571–2581

    Article  CAS  Google Scholar 

  27. Bauer JC, Veith GM, Allard LF, Oyola Y, Overbury SH, Dai S (2012) ACS Catal 2:2537–2546

    Article  CAS  Google Scholar 

  28. Bauer JC, Mullins DR, Oyola Y, Overbury SH, Dai S (2013) Catal Lett 143:926–935

    Article  CAS  Google Scholar 

  29. Wang XD, Yu HB, Hua DY, Zhou SH (2013) J Phys Chem C 117:7294–7302

    Article  CAS  Google Scholar 

  30. Baiker A, Gasser D, Lenzner J, Reller A, Schlögl R (1990) J Catal 126:555–571

    Article  CAS  Google Scholar 

  31. Schlögl R, Loose G, Wesemann M, Baiker A (1992) J Catal 137:139–157

    Article  Google Scholar 

  32. Lomello-Tafin M, Chaou AA, Morfin F, Caps V, Rousset JL (2005) Chem Commun 3:388–390

    Article  Google Scholar 

  33. Caps V, Arrii S, Morfin F, Bergert G, Rousset JL (2008) Faraday Discuss 138:241–256

    Article  CAS  Google Scholar 

  34. Vasquez Y, Luo ZP, Schaak RE (2008) J Am Chem Soc 130:11866–11867

    Article  CAS  Google Scholar 

  35. Bondi JF, Misra R, Ke XL, Sines IT, Schiffer P, Schaak RE (2010) Chem Mater 22:3988–3994

    Article  CAS  Google Scholar 

  36. Noguchi T, Sugiura M (2003) Biochem 42:6035–6042

    Article  CAS  Google Scholar 

  37. Marrani AG, Novelli V, Sheehan S, Dowling DP, Dini D (2014) ACS Appl Mater Interfac 6:143–152

    Article  CAS  Google Scholar 

  38. Lupo F, Kamalakaran R, Gulino A (2009) J Phys Chem C 113:15533–15537

    Article  CAS  Google Scholar 

  39. McIntyre NS, Johnston DD, Coatsworth LL, Davidson RD, Brown JR (1990) Surf Interface Anal 15:265–272

    Article  CAS  Google Scholar 

  40. Barreca D, Massignan C, Daolio S, Fabrizio M, Piccirillo C, Armelao L, Tondello E (2001) Chem Mater 13:588–593

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.H. Zhou thanks China Zhejiang Provincial Natural Science Foundation (Grant No. Y4110116) and the Ministry of Science and Technology of China (Grant No. 2012DFA40550) for financial support. D.Y. Hua thanks National Natural Science Foundation (Grant No. 11375091) and Natural Science Foundation of Ningbo (Grant No. 2011A610171). Z. Ma acknowledges the financial support by National Natural Science Foundation of China (Grant Nos. 21007011 and 21177028), the Ph.D. Programs Foundation of the Ministry of Education in China (Grant No. 20100071120012), and the Overseas Returnees Start-Up Research Fund of the Ministry of Education in China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Ma or Shenghu Zhou.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1,219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, C., Tao, K., Hua, D. et al. Transformation of Au3M/SiO2 (M = Ni, Co, Fe) into Au–MO x /SiO2 Catalysts for the Reduction of p-Nitrophenol. Catal Lett 144, 1001–1008 (2014). https://doi.org/10.1007/s10562-014-1224-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1224-6

Keywords

Navigation