Skip to main content
Log in

Looking at time dependent differentiation of mesenchymal stem cells by culture media using MALDI-TOF-MS

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are multipotent cells which are popular in human regenerative medicine. These cells can renew themselves and differentiate into several specialized cell types including osteoblasts, adipocytes, and chondrocytes under physiological and experimental conditions. MSCs can secret a lot of components including proteins and metabolites. These components have significant effects on their surrounding cells and also can be used to characterize them. This characterization of multipotent MSCs plays a critical role in their therapeutic potential. The metabolic profile of culture media verified by applying matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS) techniques. Also, the differentiation and development of MSCs have monitored through culture media metabolome or secretome (secreted metabolites). Totally, 24 potential metabolites were identified. Between them 12 metabolites are unique to BM-MSCs and 5 metabolites are unique to AD-MSCs. Trilineage differentiation including chondrocytes, osteoblasts, and adipocytes, as well as metabolites that are being differentiated, have been shown in different weeks. In the present study, the therapeutic effects of MSCs analyzed by decoding the metabolome for MSCs secretome via metabolic profiling using MALDI-TOF-MS techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

MSCs:

Mesenchymal stem cells

MALDI-TOF-MS:

Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry

PCA:

Principal component analysis

ISCT:

International society for cell therapy

HLA-DR:

Human leukocyte antigen—DR isotype

CD:

Cluster of differentiation

GVHD:

Graft versus host disease

DHB:

Dihydroxybenzoic acid

TFA:

Trifluoroacetic acid

MATLAB:

Matrix laboratory

hES cells:

Human embryonic stem cells

MS:

Mass spectrometry

METLIN:

Metabolite mass spectral database

HMDB:

Human metabolome database

KEGG:

Kyoto encyclopedia of genes and genomes

PLS-DA:

Partial least squares discriminant analysis

BM-MSCs:

Bone-marrow-derived mesenchymal stem cells

AD-MSCs:

Adipose-derived mesenchymal stem cells

m/z:

Mass-to-charge ratio

AD:

Alzheimer's disease

References

  • Aghayan HR et al (2021) Mesenchymal stem cells’ seeded amniotic membrane as a tissue-engineered dressing for wound healing. Drug Deliv Transl Res. https://doi.org/10.1007/s13346-021-00952-3

    Article  PubMed  Google Scholar 

  • Arjmand B et al (2019a) Different gene expression profile of mesenchymal stem cells from various sources. Genomics, proteomics, and metabolomics. Springer, pp 83–96

  • Arjmand B et al (2019b) Co-transplantation of human fetal mesenchymal and hematopoietic stem cells in type 1 diabetic mice model. Front Endocrinol (lausanne) 10:761

    Article  Google Scholar 

  • Bagher L et al (2015) Clinical grade human adipose tissue-derived mesenchymal stem cell banking. Acta Med Iran 53(9):540–546

    Google Scholar 

  • Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2(4):313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brion C, Miller SG, Moore H (1992) Regulated and constitutive secretion. Differential effects of protein synthesis arrest on transport of glycosaminoglycan chains to the two secretory pathways. J Biol Chem 267(3):1477–1483

    Article  CAS  PubMed  Google Scholar 

  • Brunstein CG, Setubal DC, Wagner JE (2007) Expanding the role of umbilical cord blood transplantation. Br J Haematol 137(1):20–35

    Article  PubMed  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    Article  CAS  PubMed  Google Scholar 

  • Caseiro AR et al (2019) Mesenchymal stem/stromal cells metabolomic and bioactive factors profiles: a comparative analysis on the umbilical cord and dental pulp derived Stem/Stromal Cells secretome. PLoS ONE. https://doi.org/10.1371/journal.pone.0221378

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui L, Lu H, Lee YH (2018) Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Mass Spectrom Rev 37(6):772–792

    Article  CAS  PubMed  Google Scholar 

  • Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos ÉC et al (2016) Noninvasive characterization of metabolites secreted in culture media by bovine embryos during in vitro production. Metabolomics 12(5):94

    Article  Google Scholar 

  • Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Functional genomics. Springer, pp 155–171

  • Floegel A et al (2013) Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62(2):639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedenstein A et al (1968) Precursor cells for osteogenic and hemopoietic tissues. Analysis of heterotopic transplants of bone marrow. Tsitologia 10:557567

    Google Scholar 

  • Friedenstein AJ et al (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues: cloning in vitro and retransplantation in vivo. Transplantation 17(4):331–340

    Article  CAS  PubMed  Google Scholar 

  • Gilany K et al (2011) The profile of human sperm proteome. A Mini-REview J Reprod Infertil 12(3):193–199

    CAS  PubMed  Google Scholar 

  • Gilany K et al (2019) Metabolic profiling of the mesenchymal stem cells’ secretome. Genomics, proteomics, and metabolomics. Springer, pp 67–81

  • Goodacre R (2007) Metabolomics of a superorganism. J Nutr 137(1):259S-266S

    Article  CAS  PubMed  Google Scholar 

  • Goodarzi P et al (2018) Mesenchymal stem cells-derived exosomes for wound regeneration. Cell biology and translational medicine, vol 4. Springer, pp 119–131

  • Griffin JL (2006) The cinderella story of metabolic profiling: does metabolomics get to go to the functional genomics ball? Philos Trans R Soc B Biol Sci 361(1465):147–161

    Article  Google Scholar 

  • Han Y et al (2019) Mesenchymal stem cells for regenerative medicine. Cells 8(8):886

    Article  CAS  PubMed Central  Google Scholar 

  • Hass R et al (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CH, Gonzalez FJ (2012) Challenges and opportunities of metabolomics. J Cell Physiol 227(8):2975–2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CH et al (2015) Bioinformatics: the next frontier of metabolomics. Anal Chem 87(1):147–156

    Article  CAS  PubMed  Google Scholar 

  • Kilroy GE et al (2007) Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol 212(3):702–709

    Article  CAS  PubMed  Google Scholar 

  • Kraly JR et al (2009) Microfluidic applications in metabolomics and metabolic profiling. Anal Chim Acta 653(1):23–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larijani B et al (2019) OMICs profiling of cancer cells. Genomics, proteomics, and metabolomics. Springer, pp 141–157

  • Lee MJ et al (2010) Proteomic analysis of tumor necrosis factor-α-induced secretome of human adipose tissue-derived mesenchymal stem cells. J Proteome Res 9(4):1754–1762

    Article  CAS  PubMed  Google Scholar 

  • Minai-Tehrani A, Jafarzadeh N, Gilany K (2016) Metabolomics: a state-of-the-art technology for better understanding of male infertility. Andrologia 48(6):609–616

    Article  CAS  PubMed  Google Scholar 

  • Orešič M et al (2011) Metabolome in progression to Alzheimer’s disease. Transl Psychiatry 1(12):e57–e57

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan Z, Raftery D (2007) Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem 387(2):525–527

    Article  CAS  PubMed  Google Scholar 

  • Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 25(11):2896–2902

    Article  PubMed  Google Scholar 

  • Price ST et al (2015) Sphingosine 1-phosphate receptor 2 regulates the migration, proliferation, and differentiation of mesenchymal stem cells. Int J Stem Cell Res Therapy 2(2):014

    Article  Google Scholar 

  • Sassoli C et al (2014) Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation. PLoS ONE 9(9):e108662

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiller J et al (2007) MALDI-TOF MS in lipidomics. Front Biosci 12:2568–2579

    Article  CAS  PubMed  Google Scholar 

  • Shah SH et al (2012) Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am Heart J 163(5):844-850.e1

    Article  CAS  PubMed  Google Scholar 

  • Shyh-Chang N, Ng H-H (2017) The metabolic programming of stem cells. Genes Dev 31(4):336–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Skalnikova HK (2013) Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie 95(12):2196–2211

    Article  Google Scholar 

  • Steuer AE, Brockbals L, Kraemer T (2019) Metabolomic strategies in biomarker research–new approach for indirect identification of drug consumption and sample manipulation in clinical and forensic toxicology? Front Chem 7:319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira FG, Salgado AJ (2020) Mesenchymal stem cells secretome: current trends and future challenges. Neural Regen Res 15(1):75

    Article  PubMed  Google Scholar 

  • Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. https://doi.org/10.1042/BSR20150025

  • Ussher JR et al (2016) The emerging role of metabolomics in the diagnosis and prognosis of cardiovascular disease. J Am Coll Cardiol 68(25):2850–2870

    Article  CAS  PubMed  Google Scholar 

  • Vizoso FJ et al (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18(9):1852

    Article  PubMed Central  Google Scholar 

  • Wang TJ et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17(4):448

    Article  PubMed  PubMed Central  Google Scholar 

  • Wishart DS et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46(D1):D608–D617

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Wishart DS (2016) Using metabo analyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics 55:14.10.1-14.10.91

    Article  Google Scholar 

  • Yu L, Li K, Zhang X (2017) Next-generation metabolomics in lung cancer diagnosis, treatment and precision medicine: mini review. Oncotarget 8(70):115774

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmerlin L et al (2013) Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie 95(12):2235–2245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Mohsen Khorshidi and Shokouh Salimi for their kind support.

Author information

Authors and Affiliations

Authors

Contributions

KG supervised the study design, experiment, and manuscript writing. PG, MR participated in critical review of the manuscript. RK participated in the study design and interpretation. AT manuscript writing and participated in statistical data analysis. HA manuscript writing and participated in the study design. MM, AM performed statistical data analysis and analyzed the raw data and performed the metabolite identification. BL supervised the project from the scientific view of point and advised on experimental design. BA supervised and designed the experiment and manuscript writing and all authors reviewed the manuscript.

Corresponding authors

Correspondence to Babak Arjmand or Bagher Larijani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilany, K., Goodarzi, P., Tayanloo-Beik, A. et al. Looking at time dependent differentiation of mesenchymal stem cells by culture media using MALDI-TOF-MS. Cell Tissue Bank 23, 653–668 (2022). https://doi.org/10.1007/s10561-021-09963-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-021-09963-3

Keywords

Navigation