Skip to main content

Advertisement

Log in

Using paracrine effects of Ad-MSCs on keratinocyte cultivation and fabrication of epidermal sheets for improving clinical applications

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Recent advances in wound healing have made cell therapy a potential approach for the treatment of various types of skin defects such as trauma, burns, scars and diabetic leg ulcers. Cultured keratinocytes have been applied to burn patients since 1981. Patients with acute and chronic wounds can be treated with autologous/allograft cultured keratinocytes. There are various methods for cultivation of epidermal keratinocytes used in cell therapy. One of the important properties of an efficient cell therapy is the preservation of epidermal stem cells. Mesenchymal Stem Cells (MSCs) are major regulatory cells involved in the acceleration of wound healing via induction of cell proliferation, angiogenesis and stimulating the release of paracrine signaling molecules. Considering the beneficial effects of MSCs on wound healing, the main aim of the present study is investigating paracrine effects of Adipose-derived Mesenchymal Stem Cell (Ad-MSCs) on cultivation of keratinocytes with focusing on preservation of stem cells and their differentiation process. We further introduced a new approach for culturing isolated keratinocytes in vitro in order to generate epidermal keratinocyte sheets without using a feeder layer. To do so, Ad-MSC conditioned medium was applied as an alternative to commercial media for keratinocyte cultivation. In this study, the expression of several stem/progenitor cell (P63, K19 and K14) and differentition (K10, IVL and FLG) markers was examined using real time PCR on days 7, 14 and 21 of culture in keratinocytes in Ad-MSC conditioned medium. P63 and α6 integrin expression was also evaluated via flow cytometry. The results were compared with control group including keratinocytes cultured in EpiLife medium and our data indicated that this Ad-MSC conditioned medium is a good alternative for keratinocyte cultivation and producing epidermal sheets for therapeutic and clinical purposes. The reasons are the expression of stem cell and differentiation markers and overcoming the requirement for feeder layer which leads to a xenograft-free transplantation. Besides, this approach has low cost and is easier to perform. However, more in vitro and in vivo experiments as well as safety evaluation required before clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atiyeh BS, Costagliola M (2007) Cultured epithelial autograft (CEA) in burn treatment: three decades later. Burns 33:405–413

    Article  Google Scholar 

  • Auxenfans C, Thépot A, Justin V, Hautefeuille A, Shahabeddin L, Damour O, Hainaut P (2009) Characterisation of human fibroblasts as keratinocyte feeder layer using p63 isoforms status. Biomed Mater Eng 19:365–372

    PubMed  Google Scholar 

  • Barrandon Y, Green H (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA 84:2302–2306

    Article  CAS  PubMed  Google Scholar 

  • Bisson F, Rochefort É, Lavoie A, Larouche D, Zaniolo K, Simard-Bisson C, Damour O, Auger FA, Guérin SL, Germain L (2013) Irradiated human dermal fibroblasts are as efficient as mouse fibroblasts as a feeder layer to improve human epidermal cell culture lifespan. Int J Mol Sci 14:4684–4704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyce ST (2001) Design principles for composition and performance of cultured skin substitutes. Burns 27:523–533

    Article  CAS  PubMed  Google Scholar 

  • Bullock AJ, Higham MC, MacNeil S (2006) Use of human fibroblasts in the development of a xenobiotic-free culture and delivery system for human keratinocytes. Tissue Eng 12:245–255

    Article  CAS  PubMed  Google Scholar 

  • Byrne C, Tainsky M, Fuchs E (1994) Programming gene expression in developing epidermis. Development 120:2369–2383

    CAS  PubMed  Google Scholar 

  • Chen L, Tredget EE, Wu PYG, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE 3:e1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirodde A, Leclerc T, Jault P, Duhamel P, Lataillade J-J, Bargues L (2011) Cultured epithelial autografts in massive burns: a single-center retrospective study with 63 patients. Burns 37:964–972

    Article  PubMed  Google Scholar 

  • Damanhuri M, Boyle J, Enoch S (2011) Advances in tissue-engineered skin substitutes. Wounds Int 2:27–34

    Google Scholar 

  • De Corte P, Verween G, Verbeken G, Rose T, Jennes S, De Coninck A, Roseeuw D, Vanderkelen A, Kets E, Haddow D (2012) Feeder layer-and animal product-free culture of neonatal foreskin keratinocytes: improved performance, usability, quality and safety. Cell Tissue Bank 13:175–189

    Article  CAS  PubMed  Google Scholar 

  • Dragúňová J, Kabát P, Koller J, Jarabinská V (2012) Experience gained during the long term cultivation of keratinocytes for treatment of burns patients. Cell Tissue Bank 13:471–478

    Article  PubMed  Google Scholar 

  • Esteban-Vives R, Young M, Over P, Schmelzer E, Corcos A, Ziembicki J, Gerlach J (2015) In vitro keratinocyte expansion for cell transplantation therapy is associated with differentiation and loss of basal layer derived progenitor population. Differentiation 89:137–145

    Article  CAS  PubMed  Google Scholar 

  • Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D, Carson P (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13:1299–1312

    Article  CAS  PubMed  Google Scholar 

  • Franke WW, Grund C, Kuhn C, Jackson BW, Illmensee K (1982) Formation of cytoskeletal elements during mouse embryogenesis. Differentiation 23:43–59

    Article  CAS  PubMed  Google Scholar 

  • Fuchs E (2008) Skin stem cells: rising to the surface. J Cell Biol 180:273–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fusenig NE, Worst PKM (1974) Mouse epidermal cell cultures I. Isolation and cultivation of epidermal cells from adult mouse skin. J Invest Dermatol 63:187–193

    Article  CAS  PubMed  Google Scholar 

  • Gazel A, Ramphal P, Rosdy M, Tornier C, Hosein N, Lee B, Tomic-Canic M, Blumenberg M (2003) Transcriptional profiling of epidermal keratinocytes: comparison of genes expressed in skin, cultured keratinocytes, and reconstituted epidermis, using large DNA microarrays. J Invest Dermatol 121:1459–1468

    Article  CAS  PubMed  Google Scholar 

  • Gerlach J, Wolf SE, Johnen C, Hartmann B (2008) Innovative regenerative medicine approaches to skin cell-based therapy for patients with burn injuries. In: Gerlach J (ed) Principles of regenerative medicine No 76. Elsevier, Burlington, pp 1298–1321

    Chapter  Google Scholar 

  • Germain L (2002) Engineering human tissues for in vivo applications: storage and translational issues for tissue repair and regeneration. In: Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint. IEEE, pp 882–883

  • Gomez-Sanchez JA, Gomis-Coloma C, Morenilla-Palao C, Peiro G, Serra E, Serrano M, Cabedo H (2013) Epigenetic induction of the Ink4a/Arf locus prevents Schwann cell overproliferation during nerve regeneration and after tumorigenic challenge. Brain 136:2262–2278

    Article  PubMed  Google Scholar 

  • Gozgit JM, Pentecost BT, Marconi SA, Ricketts-Loriaux RSJ, Otis CN, Arcaro KF (2007) PLD1 is overexpressed in an ER-negative MCF-7 cell line variant and a subset of phospho-Akt-negative breast carcinomas. Br J Cancer 97:809–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green H (2008) The birth of therapy with cultured cells. BioEssays 30:897–903

    Article  PubMed  Google Scholar 

  • Guerra L, Primavera G, Raskovic D, Pellegrini G, Golisano O, Bondanza S, Kuhn S, Piazza P, Luci A, Atzori F (2004) Permanent repigmentation of piebaldism by erbium: YAG laser and autologous cultured epidermis. Br J Dermatol 150:715–721

    Article  CAS  PubMed  Google Scholar 

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  CAS  PubMed  Google Scholar 

  • Hartmann B, Ekkernkamp A, Johnen C, Gerlach JC, Belfekroun C, Küntscher MV (2007) Sprayed cultured epithelial autografts for deep dermal burns of the face and neck. Ann Plast Surg 58:70–73

    Article  CAS  PubMed  Google Scholar 

  • Hocking AM, Gibran NS (2010) Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res 316:2213–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishimoto SI, Ishibashi T, Bottaro DP, Kaga K (2002) Direct application of keratinocyte growth factor, basic fibroblast growth factor and transforming growth factor-α during healing of tympanic membrane perforation in glucocorticoid-treated rats. Acta Otolaryngol 122:468–473

    Article  CAS  PubMed  Google Scholar 

  • Izumi K, Tobita T, Feinberg SE (2007) Isolation of human oral keratinocyte progenitor/stem cells. J Dent Res 86:341–346

    Article  CAS  PubMed  Google Scholar 

  • Jones I, Currie L, Martin R (2002) A guide to biological skin substitutes. Br J Plast Surg 55:185–193

    Article  CAS  PubMed  Google Scholar 

  • Jubin K, Martin Y, Lawrence-Watt DJ, Sharpe JR (2011) A fully autologous co-culture system utilising non-irradiated autologous fibroblasts to support the expansion of human keratinocytes for clinical use. Cytotechnology 63:655–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadoya K, Amano S, Nishiyama T, Inomata S, Tsunenaga M, Kumagai N, Matsuzaki K (2014) Changes in the expression of epidermal differentiation markers at sites where cultured epithelial autografts were transplanted onto wounds from burn scar excision. Int Wound J 13(3):412–417

    Article  PubMed  Google Scholar 

  • Kim DS, Cho HJ, Choi HR, Kwon SB, Park KC (2004) Isolation of human epidermal stem cells by adherence and the reconstruction of skin equivalents. Cell Mol Life Sci C 61:2774–2781

    Article  CAS  Google Scholar 

  • Kim W-S, Park B-S, Sung J-H, Yang J-M, Park S-B, Kwak S-J, Park J-S (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48:15–24

    Article  CAS  PubMed  Google Scholar 

  • Kjartansson J, Dalsgaard C-J, Haegerstrand A, Bjarnason R, Jakobsson B (1991) Transplantation of cultured autologous epithelium after meningococcal septicaemia in a 4-year-old with 35% skin loss. Scand J Plast Reconstr Surg Hand Surg 25:291–293

    Article  CAS  PubMed  Google Scholar 

  • Kolev V, Mandinova A, Guinea-Viniegra J, Hu B, Lefort K, Lambertini C, Neel V, Dummer R, Wagner EF, Dotto GP (2008) EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer. Nat Cell Biol 10:902–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koster MI (2010) p63 in skin development and ectodermal dysplasias. J Invest Dermatol 130:2352–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larderet G, Fortunel NO, Vaigot P, Cegalerba M, Maltere P, Zobiri O, Gidrol X, Waksman G, Martin MT (2006) Human side population keratinocytes exhibit long-term proliferative potential and a specific gene expression profile and can form a pluristratified epidermis. Stem Cells 24:965–974

    Article  CAS  PubMed  Google Scholar 

  • Laurikkala J, Mikkola ML, James M, Tummers M, Mills AA, Thesleff I (2006) p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development 133:1553–1563

    Article  CAS  PubMed  Google Scholar 

  • Lee EY, Xia Y, Kim W, Kim MH, Kim TH, Kim KJ, Park B, Sung J (2009) Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen 17:540–547

    Article  PubMed  Google Scholar 

  • Lee SH, Jin SY, Song JS, Seo KK, Cho KH (2012) Paracrine effects of adipose-derived stem cells on keratinocytes and dermal fibroblasts. Ann Dermatol 24:136–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu P, Deng Z, Han S, Liu T, Wen N, Lu W, Geng X, Huang S, Jin Y (2008) Tissue-engineered skin containing mesenchymal stem cells improves burn wounds. Artif Organs 32:925–931

    Article  PubMed  Google Scholar 

  • Lootens L, Brusselaers N, Beele H, Monstrey S (2013) Keratinocytes in the treatment of severe burn injury: an update. Int Wound J 10:6–12

    Article  PubMed  Google Scholar 

  • Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, LeRoux MA (2012) Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med 1:142–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcheik JN, Barrault C, Levard G, Morel F, Bernard FX, Lecron JC (2014) Epidermal healing in burns: autologous keratinocyte transplantation as a standard procedure: update and perspective. Plast Reconstr Surgery-Global Open 2:e218

    Article  Google Scholar 

  • Michel M, Torok N, Godbout M-J, Lussier M, Gaudreau P, Royal A, Germain L (1996) Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J Cell Sci 109:1017–1028

    CAS  PubMed  Google Scholar 

  • Mommers JM, Goossen JW, van de Kerkhof PCM, van Erp PEJ (2000) Novel functional multiparameter flow cytometric assay to characterize proliferation in skin. Cytometry 42:43–49

    Article  CAS  PubMed  Google Scholar 

  • Moustafa M, Simpson C, Glover M, Dawson RA, Tesfaye S, Creagh FM, Haddow D, Short R, Heller S, MacNeil S (2004) A new autologous keratinocyte dressing treatment for non-healing diabetic neuropathic foot ulcers. Diabet Med 21:786–789

    Article  CAS  PubMed  Google Scholar 

  • Naderi-Meshkin H, Matin MM, Heirani-Tabasi A, Mirahmadi M, Irfan-Maqsood M, Edalatmanesh MA, Shahriyari M, Ahmadiankia N, Moussavi NS, Bidkhori HR, Bahrami AR (2016) Injectable hydrogel delivery plus preconditioning of mesenchymal stem cells: exploitation of SDF-1/CXCR4 axis toward enhancing the efficacy of stem cells’ homing. Cell Biol Int 40:730–741

    Article  CAS  PubMed  Google Scholar 

  • Nair RP, Krishnan LK (2013) Identification of p63 + keratinocyte progenitor cells in circulation and their matrix-directed differentiation to epithelial cells. Stem Cell Res Ther 4:1

    Article  CAS  Google Scholar 

  • Nakajima R, Takeda S (2014) Efficient fabrication of epidermal cell sheets using γ-secretase inhibitor. J Dermatol Sci 76:246–254

    Article  CAS  PubMed  Google Scholar 

  • O’Connor N, Mulliken J, Banks-Schlegel S, Kehinde O, Green H (1981) Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 317:75–78

    Article  Google Scholar 

  • Ojeh N, Pastar I, Tomic-Canic M, Stojadinovic O (2015) Stem cells in skin regeneration, wound healing, and their clinical applications. Int J Mol Sci 16:25476–25501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papini S, Cecchetti D, Campani D, Fitzgerald W, Grivel JC, Chen S, Margolis L, Revoltella RP (2003) Isolation and clonal analysis of human epidermal keratinocyte stem cells in long-term culture. Stem Cells 21:481–494

    Article  PubMed  Google Scholar 

  • Peck MD (2011) Epidemiology of burns throughout the world. Part I: distribution and risk factors. Burns 37:1087–1100

    Article  PubMed  Google Scholar 

  • Pellegrini G, Ranno R, Stracuzzi G, Bondanza S, Guerra L, Zambruno G, Micali G, De Luca M (1999) The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin1. Transplantation 68:868–879

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, Ponzin D, McKeon F, De Luca M (2001) p63 identifies keratinocyte stem cells. Proc Natl Acad Sci USA 98:3156–3161

    Article  CAS  PubMed  Google Scholar 

  • Pontiggia L, Biedermann T, Meuli M, Widmer D, Böttcher-Haberzeth S, Schiestl C, Schneider J, Braziulis E, Montaño I, Meuli-Simmen C (2009) Markers to evaluate the quality and self-renewing potential of engineered human skin substitutes in vitro and after transplantation. J Invest Dermatol 129:480–490

    Article  CAS  PubMed  Google Scholar 

  • Presland RB, Kuechle MK, Lewis SP, Fleckman P, Dale BA (2001) Regulated expression of human filaggrin in keratinocytes results in cytoskeletal disruption, loss of cell–cell adhesion, and cell cycle arrest. Exp Cell Res 270:199–213

    Article  CAS  PubMed  Google Scholar 

  • Racila D, Winter M, Said M, Tomanek-Chalkley A, Wiechert S, Eckert RL, Bickenbach JR (2011) Transient expression of OCT4 is sufficient to allow human keratinocytes to change their differentiation pathway. Gene Ther 18:294–303

    Article  CAS  PubMed  Google Scholar 

  • Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298

    Article  PubMed  Google Scholar 

  • Rheinwatd JG, Green H (1975) Seria cultivation of strains of human epidemal keratinocytes: the formation keratinizin colonies from single cell is. Cell 6:331–343

    Article  Google Scholar 

  • Scuderi N, Anniboletti T, Carlesimo B, Onesti MG (2009) Clinical application of autologous three-cellular cultured skin substitutes based on esterified hyaluronic acid scaffold: our experience. In Vivo 23:991–1003

    PubMed  Google Scholar 

  • Senoo M, Pinto F, Crum CP, McKeon F (2007) p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 129:523–536

    Article  CAS  PubMed  Google Scholar 

  • Smith AN, Willis E, Chan VT, Muffley LA, Isik FF, Gibran NS, Hocking AM (2010) Mesenchymal stem cells induce dermal fibroblast responses to injury. Exp Cell Res 316:48–54

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Higham M, Layton C, Haycock J, Short R, MacNeil S (2004) Developments in xenobiotic-free culture of human keratinocytes for clinical use. Wound repair Regen 12:626–634

    Article  PubMed  Google Scholar 

  • Sun BK, Siprashvili Z, Khavari PA (2014) Advances in skin grafting and treatment of cutaneous wounds. Science 6212:941–945

    Article  CAS  Google Scholar 

  • Supp DM, Boyce ST (2005) Engineered skin substitutes: practices and potentials. Clin Dermatol 23:403–412

    Article  PubMed  Google Scholar 

  • Suzuki D, Senoo M (2012) Increased p63 phosphorylation marks early transition of epidermal stem cells to progenitors. J Invest Dermatol 132:2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan KKB, Salgado G, Connolly JE, Chan JKY, Lane EB (2014) Characterization of fetal keratinocytes, showing enhanced stem cell-like properties: a potential source of cells for skin reconstruction. Stem Cell Rep 3:324–338

    Article  CAS  Google Scholar 

  • Teng M, Huang Y, Zhang H (2014) Application of stems cells in wound healing—an update. Wound Repair Regen 22:151–160

    Article  PubMed  Google Scholar 

  • Truong AB, Khavari PA (2007) Control of keratinocyte proliferation and differentiation by p63. Cell Cycle 6:295–299

    Article  CAS  PubMed  Google Scholar 

  • Umeki H, Tokuyama R, Ide S, Okubo M, Tadokoro S, Tezuka M, Tatehara S, Satomura K (2014) Leptin promotes wound healing in the oral mucosa. PLoS ONE 9:e101984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb A, Li A, Kaur P (2004) Location and phenotype of human adult keratinocyte stem cells of the skin. Differentiation 72:387–395

    Article  PubMed  Google Scholar 

  • Wikramanayake TC, Stojadinovic O, Tomic-Canic M (2014) Epidermal differentiation in barrier maintenance and wound healing. Adv Wound Care 3:272–280

    Article  Google Scholar 

  • Wong M, Chua A, Tan BK (2013) Cultured epithelial autografts for the coverage of large wounds: minimizing skin graft donor sites in the sick patient. Eur J Plast Surg 36:371–376

    Article  Google Scholar 

  • You HJ, Han SK (2014) Cell therapy for wound healing. J Korean Med Sci 29:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuliani T, Saiagh S, Knol A-C, Esbelin J, Dréno B (2013) Fetal fibroblasts and keratinocytes with immunosuppressive properties for allogeneic cell-based wound therapy. PLoS ONE 8:e70408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Sonia Iranpour, Mahboubeh Kazemi and Asieh Heirani-Tabasi for their technical assistance.

Funding

This study was funded by a Grant from ACECR-Khorasan Razavi Branch (12.987).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maryam M. Matin or Ahmad Reza Bahrami.

Ethics declarations

Conflict of interest

The authors declare that there are no financial or personal conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanzadeh, H., Matin, M.M., Naderi-Meshkin, H. et al. Using paracrine effects of Ad-MSCs on keratinocyte cultivation and fabrication of epidermal sheets for improving clinical applications. Cell Tissue Bank 19, 531–547 (2018). https://doi.org/10.1007/s10561-018-9702-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-018-9702-5

Keywords

Navigation