Skip to main content
Log in

Characterization of the Upper Limb Arterial Properties during Reactive Hyperemia

  • technical note
  • Published:
Cardiovascular Engineering

Abstract

The radial artery (RA) pressure waveform is commonly used to reconstruct the central aortic pressure waveform. Because the RA pressure waveform has been used as input to this process, its features that are dependent on the local arterial properties can influence the final reconstructed aortic waveform. In this study, we determined the effects of altered upper limb pulse wave velocity (PWV) and local wave reflection parameters on RA pressure waveform augmentation (RA-AIx). Twenty healthy volunteers (10 men) between the ages of 18 and 35 years of age were recruited. Simultaneous pressure waveforms were acquired using arterial tonometers from the right carotid and the radial arteries, prior to and following tourniquet induced hyperemia. The phase velocities from the pressure wave transfer function were used to estimate the pulse wave velocity (PWV), the local reflection coefficient (Γ) and an estimate of the terminal impedance of the upper limbs, PWV0+. The RA-AIx was represented as a linear, three-parameter model that included the input (the AIx of the carotid artery pressure waveform, CA-AIx), the Γ and PWV of the arm. Tourniquet induced hyperemia did not alter Γ but reduced PWV, and PWV0+ and increased RA-AIx. Multiple linear regression analysis indicated that RA-AIx was increased by high levels of CA-AIx and PWV and decreased by elevated Γ. The relative weighing of CA-AIx, Γ and PWV on RA-AIx were 3:2:1, respectively. The AIx of RA is determined to an equal extent by the input and local factors. Interpretation of the AIx of the RA and the reconstructed central aortic waveform should be made in the context of this relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1(8476):307–10.

    PubMed  CAS  Google Scholar 

  • Chen CH, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation 1997;95(7):1827–36.

    PubMed  CAS  Google Scholar 

  • Chen CH, Ting CT, Nussbacher A, Nevo E, Kass DA, Pak P, et al. Validation of carotid artery tonometry as a means of estimating augmentation index of ascending aortic pressure. Hypertension 1996;27(2):168–75.

    PubMed  CAS  Google Scholar 

  • Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 2002;39(2):257–65.

    Article  PubMed  Google Scholar 

  • Donald AE, Charakida M, Cole TJ, Friberg P, Chowienczyk PJ, Millasseau SC, et al. Non-invasive assessment of endothelial function: which technique? J Am Coll Cardiol 2006;48(9):1846–50.

    Article  PubMed  CAS  Google Scholar 

  • Hayward CS, Kraidly M, Webb CM, Collins P. Assessment of endothelial function using peripheral waveform analysis: a clinical application. J Am Coll Cardiol 2002;40(3):521–28.

    Article  PubMed  CAS  Google Scholar 

  • Hope SA, Meredith IT, Cameron JD. Effect of non-invasive calibration of radial waveforms on error in transfer-function-derived central aortic waveform characteristics. Clin Sci 2004;107(2):205–11.

    Article  PubMed  Google Scholar 

  • Hope SA, Tay DB, Meredith IT, Cameron JD. Comparison of generalized and gender-specific transfer functions for the derivation of aortic waveforms. Am J Physiol – Heart Circ Physiol 2002;283(3):H1150–6.

    PubMed  CAS  Google Scholar 

  • Hope SA, Tay DB, Meredith IT, Cameron JD. Use of arterial transfer functions for the derivation of aortic waveform characteristics. J Hypertens 2003;21(7):1299–305.

    Article  PubMed  CAS  Google Scholar 

  • Karamanoglu M, Feneley MP. On-line synthesis of the human ascending aortic pressure pulse from the finger pulse. Hypertension 1997;30(6):1416–24.

    PubMed  CAS  Google Scholar 

  • Karamanoglu M, Gallagher DE, Avolio AP, O’Rourke MF. Pressure wave propagation in a multibranched model of the human upper limb. Am J Physiol 1995;269(4 Pt 2):H1363–9.

    PubMed  CAS  Google Scholar 

  • Karamanoglu M, O’Rourke MF, Avolio AP, Kelly RP. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur Heart J 1993;14(2):160–7.

    PubMed  CAS  Google Scholar 

  • Karamanoglu M. A method for estimation of intensity of wave reflection in an elastic tube. Cardiovasc Eng 2004;4(3):229–36.

    Article  Google Scholar 

  • Kelly P, Hayward C, Ganis J, Daley J, Avolio A, O’Rourke M. Noninvasive registration of the arterial pressure pulse waveform using high-fidelity applanation tonometry. J Vasc Med Biol 1989;1(3):142–9.

    Google Scholar 

  • Kelly R, Hayward C, Avolio A, O’Rourke M. Noninvasive determination of age-related changes in the human arterial pulse. Circulation 1989;80(6):1652–9.

    PubMed  CAS  Google Scholar 

  • Kinlay S, Creager MA, Fukumoto M, Hikita H, Fang JC, Selwyn AP, et al. Endothelium-derived nitric oxide regulates arterial elasticity in human arteries in vivo. Hypertension 2001;38(5):1049–53.

    PubMed  CAS  Google Scholar 

  • Kuvin JT, Patel AR, Sliney KA, Pandian NG, Sheffy J, Schnall RP, et al. Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. Am Heart J 2003;146(1):168–74.

    Article  PubMed  Google Scholar 

  • Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001;37(5):1236–41.

    PubMed  CAS  Google Scholar 

  • Lind L, Fors N, Hall J, Marttala K, Stenborg A. A comparison of three different methods to evaluate endothelium-dependent vasodilation in the elderly: the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Arterioscler Thromb Vasc Biol 2005;25(11):2368–75.

    Article  PubMed  CAS  Google Scholar 

  • McDonald DA. Regional pulse-wave velocity in the arterial tree. J Appl Physiol 1968;24(1):73–8.

    PubMed  CAS  Google Scholar 

  • Millasseau SC, Guigui FG, Kelly RP, Prasad K, Cockcroft JR, Ritter JM, et al. Noninvasive assessment of the digital volume pulse. Comparison with the peripheral pressure pulse. Hypertension 2000;36(6):952–6.

    PubMed  CAS  Google Scholar 

  • Millasseau SC, Patel SJ, Redwood SR, Ritter JM, Chowienczyk PJ. Pressure wave reflection assessed from the peripheral pulse: is a transfer function necessary? Hypertension 2003;41(5):1016–20.

    Article  PubMed  CAS  Google Scholar 

  • Millasseau SC, Stewart AD, Patel SJ, Redwood SR, Chowienczyk PJ. Evaluation of carotid-femoral pulse wave velocity: influence of timing algorithm and heart rate. Hypertension 2005;45(2):222–6.

    Article  PubMed  CAS  Google Scholar 

  • Milnor WR. Hemodynamics. 2nd ed. Baltimore: Williams & Wilkins; 1988.

    Google Scholar 

  • Naka KK, Tweddel AC, Doshi SN, Goodfellow J, Henderson AH. Flow-mediated changes in pulse wave velocity: a new clinical measure of endothelial function. Eur Heart J 2006;27(3):302–9.

    Article  PubMed  Google Scholar 

  • Nichols W, O’Rourke MF. McDonald’s blood flow in arteries: theoretical, experimental and clinical applications. 4th ed. Arnold, 1998.

  • Pauca AL, O’Rourke MF, Kon ND. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension 2001;38(4):932–7.

    PubMed  CAS  Google Scholar 

  • Segers P, Carlier S, Pasquet A, Rabben SI, Hellevik LR, Remme E, et al. Individualizing the aorto-radial pressure transfer function: feasibility of a model-based approach. Am J Physiol – Heart Circ Physiol 2000;279(2):H542–9.

    PubMed  CAS  Google Scholar 

  • Segers P, Rietzschel E, Heireman S, De Buyzere M, Gillebert T, Verdonck P, et al. Carotid tonometry versus synthesized aorta pressure waves for the estimation of central systolic blood pressure and augmentation index. Am J Hypertension 2005;18(9 Pt 1):1168–73.

    Article  Google Scholar 

  • Smulyan H, Mookherjee S, Warner RA. The effect of nitroglycerin on forearm arterial distensibility. Circulation 1986;73(6):1264–9.

    PubMed  CAS  Google Scholar 

  • Stergiopulos N, Westerhof BE, Westerhof N. Physical basis of pressure transfer from periphery to aorta: a model-based study. Am J Physiol 1998;274(4 Pt 2):H1386–92.

    PubMed  CAS  Google Scholar 

  • Van Bortel LM, Duprez D, Starmans-Kool MJ, Safar ME, Giannattasio C, Cockcroft J, et al. Clinical applications of arterial stiffness, Task Force III: recommendations for user procedures. Am J Hypertens 2002;15(5):445–52.

    Article  PubMed  Google Scholar 

  • Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 2006;113(9):1213–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Karamanoglu.

Additional information

Presented in part in abstract form: June 2006 A26248 Canadian Society of Anesthesiology, Toronto, Ontario, Canada. September 2006 Proceedings of the XVII International Conference of the Cardiovascular System Dynamics Society, Vaals, The Netherlands

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobson, G., Chong, M., Walker, M. et al. Characterization of the Upper Limb Arterial Properties during Reactive Hyperemia. Cardiovasc Eng 7, 127–134 (2007). https://doi.org/10.1007/s10558-007-9032-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10558-007-9032-x

Keywords

Navigation