Skip to main content
Log in

Advances in MicroRNA Therapy for Heart Failure: Clinical Trials, Preclinical Studies, and Controversies

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Heart failure (HF) is a rapidly growing public health issue with more than 37.7 million patients worldwide and an annual healthcare cost of $108 billion. However, HF-related drugs have not changed significantly for decades, and it is essential to find biological drugs to provide better treatment for HF patients. MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) with a length of approximately 21 nucleotides and play an important role in the onset and progression of cardiovascular diseases. Increasing studies have shown that miRNAs are widely involved in the pathophysiology of HF, and the regulation of miRNAs has promising therapeutic effects. Among them, there is great interest in miRNA-132, since the encouraging success of anti-miRNA-132 therapy in a phase 1b clinical trial in 2020. However, it is worth noting that the multi-target effect of miRNA may produce side effects such as thrombocytopenia, revascularization dysfunction, severe immune response, and even death. Advances in drug delivery modalities, delivery vehicles, chemical modifications, and plant-derived miRNAs are expected to address safety concerns and further improve miRNA therapy. Here, we reviewed the preclinical studies and clinical trials of HF-related miRNAs (especially miRNA-132) in the past 5 years and summarized the controversies of miRNA therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets from the current study are available from the corresponding author upon reasonable request.

References

  1. Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016;13(6):368–78.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vos T, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–96.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cook C, et al. The annual global economic burden of heart failure. Int J Cardiol. 2014;171(3):368–76.

    Article  PubMed  Google Scholar 

  4. Tham YK, et al. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol. 2015;89(9):1401–38.

    Article  CAS  PubMed  Google Scholar 

  5. McDonagh TA, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–726.

    Article  CAS  PubMed  Google Scholar 

  6. Baker AH, Giacca M. Antagonism of miRNA in heart failure: first evidence in human. Eur Heart J. 2021;42(2):189–91.

    Article  PubMed  Google Scholar 

  7. Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov. 2017;16(3):167–79.

    Article  CAS  PubMed  Google Scholar 

  8. Gomes CPC, et al. Regulatory RNAs in heart failure. Circulation. 2020;141(4):313–28.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bernardo BC, et al. miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem. 2015;7(13):1771–92.

    Article  CAS  PubMed  Google Scholar 

  10. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  11. Reinhart BJ, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.

    Article  CAS  PubMed  Google Scholar 

  12. Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M, et al. Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci. 2019;20(24):6249. https://doi.org/10.3390/ijms20246249

  13. Lee HY, et al. Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing. Nucleic Acids Res. 2013;41(13):6568–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. Rna. 2019;25(1):1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol. 2010;11(4):252–63.

    Article  CAS  PubMed  Google Scholar 

  16. Huang S, et al. The role of exosomes and their cargos in the mechanism, diagnosis, and treatment of atrial fibrillation. Front Cardiovasc Med. 2021;8:712828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang CK, Kafert-Kasting S, Thum T. Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ Res. 2020;126(5):663–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hinkel R, et al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation. 2013;128(10):1066–75.

    Article  CAS  PubMed  Google Scholar 

  19. Lu Y, et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation. 2010;122(23):2378–87.

    Article  CAS  PubMed  Google Scholar 

  20. Song Y, et al. Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction. Theranostics. 2019;9(8):2346–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Divakaran V, Mann DL. The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res. 2008;103(10):1072–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thum T, et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation. 2007;116(3):258–67.

    Article  CAS  PubMed  Google Scholar 

  23. Ucar A, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun. 2012;3:1078.

    Article  PubMed  Google Scholar 

  24. Foinquinos A, et al. Preclinical development of a miR-132 inhibitor for heart failure treatment. Nat Commun. 2020;11(1):633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Batkai S, et al. CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. Eur Heart J. 2021;42(2):192–201.

    Article  CAS  PubMed  Google Scholar 

  26. Devaux Y, Badimon L. CDR132L: another brick in the wall towards the use of miRNAs to treat cardiovascular disease. Eur Heart J. 2021;42(2):202–4.

    Article  PubMed  Google Scholar 

  27. Hinkel R, et al. AntimiR-132 attenuates myocardial hypertrophy in an animal model of percutaneous aortic constriction. J Am Coll Cardiol. 2021;77(23):2923–35.

    Article  CAS  PubMed  Google Scholar 

  28. Lavenniah A, et al. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy. Mol Ther. 2020;28(6):1506–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eskildsen TV, et al. Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci. 2013;14(6):11190–207.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Daehn IS, Duffield JS. The glomerular filtration barrier: a structural target for novel kidney therapies. Nat Rev Drug Discov. 2021;20(10):770–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheng M, et al. Emerging drugs for the treatment of cutaneous T-cell lymphoma. Expert Opin Emerg Drugs. 2022;27(1):45–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang S, et al. The risks of miRNA therapeutics: in a drug target perspective. Drug Des Devel Ther. 2021;15:721–33.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Titze-de-Almeida R, David C, Titze-de-Almeida SS. The race of 10 synthetic RNAi-based drugs to the pharmaceutical market. Pharm Res. 2017;34(7):1339–63.

    Article  CAS  PubMed  Google Scholar 

  34. Hong DS, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 2020;122(11):1630–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chi X, Gatti P, Papoian T. Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discov Today. 2017;22(5):823–33.

    Article  CAS  PubMed  Google Scholar 

  36. Sewing S, et al. Assessing single-stranded oligonucleotide drug-induced effects in vitro reveals key risk factors for thrombocytopenia. PLoS One. 2017;12(11):e0187574.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Frazier KS. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist’s perspective. Toxicol Pathol. 2015;43(1):78–89.

    Article  PubMed  Google Scholar 

  38. Kumarswamy R, et al. Vascular importance of the miR-212/132 cluster. Eur Heart J. 2014;35(45):3224–31.

    Article  CAS  PubMed  Google Scholar 

  39. Täubel J, et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J. 2021;42(2):178–88.

    Article  PubMed  Google Scholar 

  40. Nicholls M. Recognition for heart failure breakthrough. Eur Heart J. 2022;43(2):93–4.

    Article  PubMed  Google Scholar 

  41. Vegter EL, et al. MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail. 2016;18(5):457–68.

    Article  CAS  PubMed  Google Scholar 

  42. Duygu B, de Windt LJ, da Costa Martins PA. Targeting microRNAs in heart failure. Trends Cardiovasc Med. 2016;26(2):99–110.

    Article  CAS  PubMed  Google Scholar 

  43. Gao F, et al. Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nat Commun. 2019;10(1):1802.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Qiao L, et al. microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J Clin Invest. 2019;129(6):2237–50.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ramanujam D, et al. MicroRNA-21-dependent macrophage-to-fibroblast signaling determines the cardiac response to pressure overload. Circulation. 2021;143(15):1513–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bejerano T, et al. Nanoparticle delivery of miRNA-21 mimic to cardiac macrophages improves myocardial remodeling after myocardial infarction. Nano Lett. 2018;18(9):5885–91.

    Article  CAS  PubMed  Google Scholar 

  47. Li F, Li SS, Chen H, Zhao JZ, Hao J, Liu JM, et al. miR-320 accelerates chronic heart failure with cardiac fibrosis through activation of the IL6/STAT3 axis. Aging (Albany NY). 2021;13(18):22516–22527. https://doi.org/10.18632/aging.203562

  48. Jeong D, et al. miR-25 tough decoy enhances cardiac function in heart failure. Mol Ther. 2018;26(3):718–29.

    Article  CAS  PubMed  Google Scholar 

  49. Oh JG, et al. Role of the PRC2-Six1-miR-25 signaling axis in heart failure. J Mol Cell Cardiol. 2019;129:58–68.

    Article  CAS  PubMed  Google Scholar 

  50. Tian C, et al. Extracellular vesicular microRNA-27a* contributes to cardiac hypertrophy in chronic heart failure. J Mol Cell Cardiol. 2020;143:120–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu YL, et al. Long non-coding RNA CASC7 is associated with the pathogenesis of heart failure via modulating the expression of miR-30c. J Cell Mol Med. 2020;24(19):11500–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lerchenmüller C, et al. CITED4 Protects against adverse remodeling in response to physiological and pathological stress. Circ Res. 2020;127(5):631–46.

    PubMed  PubMed Central  Google Scholar 

  53. Hu J, et al. RBFox2-miR-34a-Jph2 axis contributes to cardiac decompensation during heart failure. Proc Natl Acad Sci U S A. 2019;116(13):6172–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shi Y, et al. Cardiac-specific overexpression of miR-122 induces mitochondria-dependent cardiomyocyte apoptosis and promotes heart failure by inhibiting Hand2. J Cell Mol Med. 2021;25(11):5326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu WL, Liu Q. Shikonin attenuates sympathetic remodeling in chronic heart failure mice via regulating miR-124. Biochem Biophys Res Commun. 2019;520(2):359–65.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang B, et al. MiR-125b inhibits cardiomyocyte apoptosis by targeting BAK1 in heart failure. Mol Med. 2021;27(1):72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang YR, et al. miRNA-130a improves cardiac function by down-regulating TNF-α expression in a rat model of heart failure. Eur Rev Med Pharmacol Sci. 2018;22(23):8454–61.

    PubMed  Google Scholar 

  58. Shao S, et al. Ivabradine ameliorates cardiac function in heart failure with preserved and reduced ejection fraction via upregulation of miR-133a. Oxid Med Cell Longev. 2021;2021:1257283.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ou Y, et al. LncRNA SOX2OT/Smad3 feedback loop promotes myocardial fibrosis in heart failure. IUBMB Life. 2020;72(11):2469–80.

    Article  CAS  PubMed  Google Scholar 

  60. Chen YT, Wang J, Tong KS, Wong LL, Liew OW, Richards AM. et al. The association of heart failure-related microRNAs with neurohormonal signaling. Biochim Biophys Acta Mol Basis Dis. 2017;(8):2031–2040. https://doi.org/10.1016/j.bbadis.2016.12.019

  61. Gu M, et al. MiR-147b inhibits cell viability and promotes apoptosis of rat H9c2 cardiomyocytes via down-regulating KLF13 expression. Acta Biochim Biophys Sin (Shanghai). 2018;50(3):288–97.

    Article  CAS  PubMed  Google Scholar 

  62. Raso A, et al. Therapeutic delivery of miR-148a suppresses ventricular dilation in heart failure. Mol Ther. 2019;27(3):584–99.

    Article  CAS  PubMed  Google Scholar 

  63. LaRocca TJ, et al. Pharmacological silencing of microRNA-152 prevents pressure overload-induced heart failure. Circ Heart Fail. 2020;13(3):e006298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin B, et al. Sirt1 improves heart failure through modulating the NF-κB p65/microRNA-155/BNDF signaling cascade. Aging (Albany NY). 2020;13(10):14482–98.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Satoh T, et al. Metabolic syndrome mediates ROS-miR-193b-NFYA-dependent downregulation of soluble guanylate cyclase and contributes to exercise-induced pulmonary hypertension in heart failure with preserved ejection fraction. Circulation. 2021;144(8):615–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang X, et al. MicroRNA-195 regulates metabolism in failing myocardium via alterations in sirtuin 3 expression and mitochondrial protein acetylation. Circulation. 2018;137(19):2052–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang Y, et al. 1, 8-cineole attenuates cardiac hypertrophy in heart failure by inhibiting the miR-206-3p/SERP1 pathway. Phytomedicine. 2021;91:153672.

    Article  CAS  PubMed  Google Scholar 

  68. Verjans R, et al. MicroRNA-221/222 family counteracts myocardial fibrosis in pressure overload-induced heart failure. Hypertension. 2018;71(2):280–8.

    Article  CAS  PubMed  Google Scholar 

  69. Li Y, et al. MiR-221-3p targets Hif-1α to inhibit angiogenesis in heart failure. Lab Invest. 2021;101(1):104–15.

    Article  CAS  PubMed  Google Scholar 

  70. Wang K, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J. 2016;37(33):2602–11.

    Article  CAS  PubMed  Google Scholar 

  71. Li F, et al. miR-320 accelerates chronic heart failure with cardiac fibrosis through activation of the IL6/STAT3 axis. Aging (Albany NY). 2021;13(18):22516–27.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang X, et al. The double face of miR-320: cardiomyocytes-derived miR-320 deteriorated while fibroblasts-derived miR-320 protected against heart failure induced by transverse aortic constriction. Signal Transduct Target Ther. 2021;6(1):69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li H, et al. Nuclear miR-320 mediates diabetes-induced cardiac dysfunction by activating transcription of fatty acid metabolic genes to cause lipotoxicity in the heart. Circ Res. 2019;125(12):1106–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yanni J, et al. Silencing miR-370-3p rescues funny current and sinus node function in heart failure. Sci Rep. 2020;10(1):11279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang Y, et al. MicroRNA-454-mediated NEDD4-2/TrkA/cAMP axis in heart failure: mechanisms and cardioprotective implications. J Cell Mol Med. 2021;25(11):5082–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gu Q, et al. LncRNA promoted inflammatory response in ischemic heart failure through regulation of miR-455-3p/TRAF6 axis. Inflamm Res. 2020;69(7):667–81.

    Article  PubMed  Google Scholar 

  77. Fan J, et al. Nuclear miR-665 aggravates heart failure via suppressing phosphatase and tensin homolog transcription. Sci China Life Sci. 2020;63(5):724–36.

    Article  CAS  PubMed  Google Scholar 

  78. Fan J, et al. MiR-665 aggravates heart failure via suppressing CD34-mediated coronary microvessel angiogenesis. Aging (Albany NY). 2018;10(9):2459–79.

    Article  CAS  PubMed  Google Scholar 

  79. Feng W, et al. Crosstalk between heart failure and cognitive impairment via hsa-miR-933/RELB/CCL21 pathway. Biomed Res Int. 2021;2021:2291899.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Essandoh K, et al. MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock. 2016;46(2):122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yan X, et al. Shenfu formula reduces cardiomyocyte apoptosis in heart failure rats by regulating microRNAs. J Ethnopharmacol. 2018;227:105–12.

    Article  PubMed  Google Scholar 

  82. Fan J, Zhang X, Nie X, Li H, Yuan S, Dai B, et al. Nuclear miR-665 aggravates heart failure via suppressing phosphatase and tensin homolog transcription. Sci China Life Sci. 2020;63(5):724–736. https://doi.org/10.1007/s11427-018-9515-1

  83. Chen YT, et al. The association of heart failure-related microRNAs with neurohormonal signaling. Biochim Biophys Acta Mol Basis Dis. 2017;1863(8):2031–40.

    Article  CAS  PubMed  Google Scholar 

  84. Vegter EL, et al. Rodent heart failure models do not reflect the human circulating microRNA signature in heart failure. PLoS One. 2017;12(5):e0177242.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Momin MY, Gaddam RR, Kravitz M, Gupta A, Vikram A, et al. The challenges and opportunities in the development of microRNA therapeutics: a multidisciplinary viewpoint. Cells. 2021;10(11):3097. https://doi.org/10.3390/cells10113097

  86. Hulot JS, Masurkar N. miRNA-based therapeutics for heart failure: why not? J Am Coll Cardiol. 2020;75(15):1801–3.

    Article  PubMed  Google Scholar 

  87. Hulot JS, et al. Effect of intracoronary administration of AAV1/SERCA2a on ventricular remodelling in patients with advanced systolic heart failure: results from the AGENT-HF randomized phase 2 trial. Eur J Heart Fail. 2017;19(11):1534–41.

    Article  CAS  PubMed  Google Scholar 

  88. Hinkel R, et al. AntimiR-21 prevents myocardial dysfunction in a pig model of ischemia/reperfusion injury. J Am Coll Cardiol. 2020;75(15):1788–800.

    Article  CAS  PubMed  Google Scholar 

  89. Zheng D, et al. The role of exosomes and exosomal microRNA in cardiovascular disease. Front Cell Dev Biol. 2020;8:616161.

    Article  PubMed  Google Scholar 

  90. Wan Z, et al. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics. 2020;10(1):218–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Egholm M, et al. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature. 1993;365(6446):566–8.

    Article  CAS  PubMed  Google Scholar 

  92. Sahu B, et al. Synthesis and characterization of conformationally preorganized, (R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility. J Org Chem. 2011;76(14):5614–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kaplan AR, et al. Ku80-targeted pH-sensitive peptide-PNA conjugates are tumor selective and sensitize cancer cells to ionizing radiation. Mol Cancer Res. 2020;18(6):873–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Teng Y, et al. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther. 2021;29(8):2424–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Innovation Program of Hunan Province (2021RC2106 to CF).

Author information

Authors and Affiliations

Authors

Contributions

SH drafted the manuscript. SH and CF designed the study. Yong Zhou, Yiru Zhang, NL, JL, and LL revised the manuscript. SH was responsible for the collection of data or analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chengming Fan.

Ethics declarations

Ethics Approval

An ethics approval was not required to conduct this project, as data are not individualized and primary data were not collected.

Consent to Participate

Not applicable.

Consent for Publication

All authors have read and approved the content and agree to submit the final manuscript for consideration and publication in the journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Zhou, Y., Zhang, Y. et al. Advances in MicroRNA Therapy for Heart Failure: Clinical Trials, Preclinical Studies, and Controversies. Cardiovasc Drugs Ther (2023). https://doi.org/10.1007/s10557-023-07492-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10557-023-07492-7

Keywords

Navigation